A Víz Keretirányelv hazai megvalósítása
VÍZGYŰJTŐ-GAZDÁLKODÁSI TERV

3-3 Fekete-víz vízgyűjtő

közreadja:
Vízügyi és Környezetvédelmi Központi Igazgatóság,
Dél-Dunántúli Környezetvédelmi és Vízügyi Igazgatóság

2010. április
TARTALOM

1 VÍZGYŰJTŐK ÉS VÍZTESTEK JELLEMZÉSE ... 2

1.1 Természeti környezet .. 2
1.1.1 Domborzat, éghajlat .. 3
1.1.2 Földtart, talajtakaró .. 3
1.1.3 Vízföldtart ... 6
1.1.4 Vízrajz ... 6
1.1.5 Elővilág ... 7

1.2 Társadalmi és gazdasági viszonyok .. 8
1.2.1 Településhálózat, népességfőldrajz ... 8
1.2.2 Területhasználat ... 8
1.2.3 Gazdaságfőldrajz .. 11

1.3 A vízgyűjtő-gazdálkodási tervezés szereplői ... 13
1.3.1 Hatáskörrel Rendekező Hatóság .. 13
1.3.2 A tervezést végző szervezetek ... 14
1.3.3 Határvízi kapcsolatok .. 16
1.3.4 Érintettek ... 16

1.4 Víztestek jellemzése ... 16
1.4.1 Vízfolyás víztestek ... 17
1.4.2 Állóvíz víztestek .. 19
1.4.3 Erősen módosított és mesterséges víztestek .. 20
1.4.4 Felszín alatti víztestek .. 23

2 EMBERI TEVÉKENYSÉGBŐL EREDŐ TERHELÉSEK ÉS HATÁSOK ... 28

2.1 Pontszerű szennyezőforrások ... 28
2.1.1 Települési szennyezőforrások .. 29
2.1.2 Ipari szennyezőforrások, szennyezett területek ... 30
2.1.3 Mezőgazdasági szennyezőforrások ... 31
2.1.4 Balesetszerű szennyezések ... 32

2.2 Diffúz szennyezőforrások ... 32
2.2.1 Települések .. 32
2.2.2 Mezőgazdasági tevékenység ... 33

2.3 Természetes állapotot befolyásoló hidromorfológiai beavatkozások .. 33
2.3.1 Duzzasztások (keresztirányú műtárgyak) ... 33
2.3.2 Folyószabadulás, árvízvédelemi tiltések ... 33
2.3.3 Vízjárást módosító beavatkozások, vízkormányzás .. 35
2.3.4 Meder és partrendezés, hajózóútbiztosítás ... 35

2.4 Vízkivételek .. 36
2.4.1 Vízkivételek felszíni vizekből .. 36
2.4.2 Vízkivételek felszín alatti vizekből ... 37

2.5 Egyéb terhelések .. 37
2.5.1 Közlekedés ... 37
2.5.2 Rekreáció .. 38
2.5.3 Halászat ... 38

3 VÉDELEM ALATT ÁLLÓ TERÜLETEK .. 39

3.1 Ivóvízkivételek védőterületei ... 39
3.1.1 Felszín alatti ivóvízbázisok ... 39
3.1.2 Felszín alatti ivóvízbázisok .. 39

3.2 Tápanyag- és nitrát-érzékeny területek ... 40
<table>
<thead>
<tr>
<th>3.3</th>
<th>Természeti fürdőhelyek ...42</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.3.1</td>
<td>Jogszabályi háttér 42</td>
</tr>
<tr>
<td>3.3.2</td>
<td>Természeti fürdőhelyek kijelölésével érintett víztestek 43</td>
</tr>
<tr>
<td>3.4</td>
<td>Védett természeti területek ..43</td>
</tr>
<tr>
<td>3.4.1</td>
<td>Jogi háttér 43</td>
</tr>
<tr>
<td>3.4.2</td>
<td>Védett területek listája 45</td>
</tr>
<tr>
<td>3.5</td>
<td>Halak élettételeinek biztosítására kijelölt felszíni vizek ...49</td>
</tr>
<tr>
<td>4</td>
<td>MONITORING HÁLÓZATOK ÉS PROGRAMOK ..51</td>
</tr>
<tr>
<td>4.1</td>
<td>Felszíni vizek monitoringja ..51</td>
</tr>
<tr>
<td>4.2</td>
<td>Felszín alatti vizek monitoringja ...52</td>
</tr>
<tr>
<td>4.3</td>
<td>Védett területek monitoringja ..53</td>
</tr>
<tr>
<td>5</td>
<td>A VIZEK ÁLLAPOTÁNAK MINŐSÍTÉSE ..54</td>
</tr>
<tr>
<td>5.1</td>
<td>Vízfolyás víztestek ökológiai állapotának minősítése ...54</td>
</tr>
<tr>
<td>5.1.1</td>
<td>Biológiai állapot értékelése ..54</td>
</tr>
<tr>
<td>5.1.2</td>
<td>Fiziko-kémiai állapot értékelése ..57</td>
</tr>
<tr>
<td>5.1.3</td>
<td>Hidromorfológiai állapot értékelése 59</td>
</tr>
<tr>
<td>5.1.4</td>
<td>Az ökológiai állapot integrált minősítése vízfolyásokra ...61</td>
</tr>
<tr>
<td>5.1.5</td>
<td>Kémiai állapot veszélyes anyagok szerinti minősítése ..62</td>
</tr>
<tr>
<td>5.2</td>
<td>Állóvíz víztestek ökológiai állapotának minősítése ..63</td>
</tr>
<tr>
<td>5.2.1</td>
<td>Biológiai állapot értékelése ..63</td>
</tr>
<tr>
<td>5.2.2</td>
<td>Fiziko-kémiai állapot értékelése ..64</td>
</tr>
<tr>
<td>5.2.3</td>
<td>Hidromorfológiai állapot értékelése 64</td>
</tr>
<tr>
<td>5.2.4</td>
<td>Az ökológiai állapot integrált minősítése állóvizekre ...64</td>
</tr>
<tr>
<td>5.2.5</td>
<td>Kémiai állapot veszélyes anyagok szerinti minősítése ..65</td>
</tr>
<tr>
<td>5.3</td>
<td>Felszín alatti víztestek állapotának minősítése ...65</td>
</tr>
<tr>
<td>5.3.1</td>
<td>A mennyiségi állapot értékelése és minősítése ...65</td>
</tr>
<tr>
<td>5.3.2</td>
<td>Kémiai állapot értékelése és minősítése ..68</td>
</tr>
<tr>
<td>5.4</td>
<td>Védelem alatt álló területek állapotának értékelése ..73</td>
</tr>
<tr>
<td>5.4.1</td>
<td>Ivóvízkivételek védőterületei ..73</td>
</tr>
<tr>
<td>5.4.2</td>
<td>Nitrat-érzékeny területek ...75</td>
</tr>
<tr>
<td>5.4.3</td>
<td>Természetes fürdőhelyek, ...76</td>
</tr>
<tr>
<td>5.4.4</td>
<td>Védett természeti területek ..76</td>
</tr>
<tr>
<td>5.4.5</td>
<td>Ôshonos halfajok élettételeit biztosító vizek védelme ..78</td>
</tr>
<tr>
<td>5.5</td>
<td>A víztestek állapotával kapcsolatos jelentős problémák és okaik ..78</td>
</tr>
<tr>
<td>5.5.1</td>
<td>Vízfolyások és állóvizek ...78</td>
</tr>
<tr>
<td>5.5.2</td>
<td>Felszín alatti vizek ..80</td>
</tr>
<tr>
<td>6</td>
<td>KÖRNYEZETI CÉLKITŰZÉSEK..82</td>
</tr>
<tr>
<td>6.1</td>
<td>Mentességi vizsgálatok ...83</td>
</tr>
<tr>
<td>6.2</td>
<td>Döntési prioritások ..84</td>
</tr>
<tr>
<td>6.3</td>
<td>Környezeti célkitűzések ütemezése ...86</td>
</tr>
<tr>
<td>7</td>
<td>VÍZHASZNÁLATOK GAZDASÁGI ELEMZÉSE ..88</td>
</tr>
<tr>
<td>7.1</td>
<td>Közüzemi vízellátás, szennyvízelvezetés- és tisztítás költség-megtérülésének értékelése88</td>
</tr>
<tr>
<td>7.2</td>
<td>Mezőgazdasági vízszolgáltatások pénzügyi költségmegtérülésének értékelése ...89</td>
</tr>
<tr>
<td>7.3</td>
<td>A vízszolgáltatások külső költségeinek jelenlegi megfizetetettsének helyzete ..91</td>
</tr>
<tr>
<td>8</td>
<td>INTÉZKEDÉSI PROGRAM ..92</td>
</tr>
<tr>
<td>8.1</td>
<td>Átfogó intézkedések ...93</td>
</tr>
<tr>
<td>8.1.1</td>
<td>Jogalkotási és egyéb végrehajtási feladatok ...93</td>
</tr>
</tbody>
</table>
VÍZGYŰJTŐ-GAZDÁLKODÁSI TERV
3-3 Fekete-víz vízgyűjtő

8.1.2 Igazgatási eszközök fejlesztése .. 93
8.1.3 Hatósági és igazgatási munka erősítése ... 94
8.1.4 Monitoring hálózat és eszközök fejlesztése ... 95
8.1.5 Az informatikai rendszerek fejlesztése ... 96
8.1.6 Vízi szolgáltatások költségeinek visszatérülésére tett intézkedések ... 97
8.1.7 Pénzügyi őszőtők (támogatások) alkalmazása .. 99
8.1.8 Kutatás, fejlesztés ... 99
8.1.9 Képességfejlesztés, szemléletformálás .. 100

8.2 Tápanyag- és szervesanyag terhelések csökkentését célzó intézkedések .. 100
8.2.1 Településekről összegyűjtött kommunális szennyvízek elvezetése, tisztítása, elhelyezése 101
8.2.2 Településekről származó egyéb szennyezésekkel kapcsolatos intézkedések .. 103
8.2.3 Ipari forrásból származó közvetlen szennyezések .. 104
8.2.4 Mezőgazdasági tevékenységből származó tápanyag és szervesanyag terhelések csökkentése, illetve környezetfenntartó szerepének növelése .. 105
8.2.5 Jó halászati és horgászati gyakorlat kialakítása és elterjesztése .. 108
8.2.6 A Tápanyag és szervesanyag terhelések csökkentését célzó intézkedések alkalmazása 110

8.3 Egyéb szennyezések megelőzése, illetve szennyezések kárelhárítása, kármentesítése 113

8.4 Vízifolyások és állóvizek hidromorfológiai állapotát javító intézkedések ... 117
8.4.1 Vízfolyások és állóvizek medrét erőtő intézkedések ... 117
8.4.2 Vízfolyások árterére vagy hullámterére, valamint az állóvizek parti sávjára vonatkozó intézkedések 118
8.4.3 A hidromorfológiai viszonyokat jelentősen befolyásoló vízhasználatok módosítása 120
8.4.4 A vízfolyások és állóvizek hidromorfológiai állapotát javító intézkedések alkalmazása 121

8.5 Fenntartható vízhasználatok a vizek mennyiségi védelme érdekében ... 122
8.6 Megfelelő ivóvízminőséget biztosító intézkedések ... 125
8.7 Vizes élőhelyekre és védett területekre vonatkozó egyedi intézkedések ... 126
8.7.1 Vizes élőhelyekre és természetes értékei miatt védett területekre vonatkozó intézkedések 127
8.7.2 A vizes élőhelyekre vonatkozó intézkedések alkalmazása .. 128
8.7.3 A halak életfeltételeinek biztosítására kijelölt felszíni vizekre vonatkozó intézkedések 130
8.7.4 Természetes fürdőhelyekre vonatkozó speciális intézkedések .. 131
8.8 Finanszírozási igény, rendelkezésre álló források ... 131
8.9 Nemzetközi együttműködés, a határon átnyúló problémák kezelése .. 136

9 KAPCSOLÓDÓ FEJLESZTÉSI PROGRAMOK ÉS TERVEK ... 137

10 A KÖZVÉLEMÉNY TÁJÉKOZTATÁSA .. 140
10.1 A tájékoztatás folyamata .. 140
10.2 A konzultációk eredményei és hatása a tervezési területre ... 146
10.3 A tájékoztatás eredményei és hatása a tervezési területre ... 146

11 ÉGHAJLATVÁLTOZÁS .. 148
11.1 Az éghajlatváltozás várható hatásai .. 148
11.2 Az éghajlatváltozás kezelése a vízgyűjtő-gazdálkodási terven ... 150

A TERV KÉSZÍTÉSÉBEN RÉSZTVETT SZAKÉRTŐK .. 152

Ábrák
1-1. ábra: A tervezési terület - A Fekete-víz tervezési alegység ... 2
1-2. ábra: Jellemző felszín közeli közösségi fejlesztő területén a Fekete-víz tervezési alegység területén 4
1-3. ábra: A területen található iparág a Fekete-víz tervezési alegység területén .. 5
1-4. ábra: A területen található iparág a Fekete-víz tervezési alegység területen .. 9
1-5. ábra: A területen található iparág a Fekete-víz tervezési alegység területén .. 11
1-6. ábra: A területen található iparág a Fekete-víz tervezési alegység területen .. 25
Táblázatok

1-1. táblázat: Jellemző felszín közeli közvetkifejlődés Magyarország, a Dráva rész-vízgyűjtő és a Fekete-víz tervezési alegység területén ... 4
1-2. táblázat: Jellemző talajtípusok Magyarország, a Dráva rész-vízgyűjtő és a Fekete-víz tervezési alegység területén ... 5
1-3. táblázat: Az erdők fajai és védettség szerinti adatai, Magyarország, a Dráva rész-vízgyűjtő és a Fekete-víz tervezési alegység területén ... 7
1-4. táblázat: A területhasználat országos, részvízgyűjtő és alegység adatai ... 10
1-5. táblázat: A tervezési alegységek ... 14
1-6. táblázat: A vízfolyások típusai ... 18
1-7. táblázat: Az alegység területén található természetes vízfolyás víztestek ... 19
1-8. táblázat: Állóvizek typológiai szempontjai ... 19
1-9. táblázat: Az állóvizek típusai ... 20
1-10. táblázat: Az erősen módosított víztest kijelölés lépései ... 21
1-11. táblázat: Az alegység területén található erősen módosított vízfolyás víztestek ... 22
1-12. táblázat: Az alegység területén található mesterséges állóvíz víztestek ... 23
1-13. táblázat: Az alegység területén található felszín alatti víztestek ... 26
3-1. táblázat: Nitrátérzékeny területek aránya ... 41
3-2. táblázat: Víztől függő védett természeti területek az alegység területén ... 45
3-3. táblázat: Víztől függő védett természeti területek több jellemzői ... 47
5-1. táblázat: A biológiai minősítés eredményeinek megoszlása élılén együttesenként ... 55
5-2. táblázat: Az összesített biológiai minősítés eredményei víztest kategóriánként ... 56
5-3. táblázat: A támogató fizikai és kémiai jellemzők szerint végzett vízműködés összesített eredménye ... 58
5-4. táblázat: Vízfolyások hidromorfológiai minősítésének eredményei kategóriák szerinti felbontásban ... 59
5-5. táblázat: Vízfolyások integrált ökológiai minősítés eredményei a különböző kategóriákban ... 61
5-6. táblázat: Állóvizek integrált ökológiai minősítésének eredményei a különböző kategóriákban ... 65
5-7. táblázat: Felszín alatti víztestek mennyiségi állapotának összegzése ... 68
5-8. táblázat: A nitrat-szenyezetség jellemzői ... 70
5-9. táblázat: Felszín alatti vizek által veszélyeztetett felszíni víztestek ... 71
5-10. táblázat: Felszín alatti víztestek kémiai állapotának minősítése ... 72
5-11. táblázat: Nitrát-érzékeny-területek ... 75
5-12. táblázat: Károsodott víztől függő védett természeti területek az alegység területén ... 76
5-13. táblázat: Vízfolyások problémája ... 81
5-14. táblázat: FAV problémája ... 81
6-1. táblázat: A mentességi vizsgálatok eredményei (az ok elôfordulása a mentességet igénylô víztestek %-ában) .. 83
6-2. táblázat: A mentességi vizsgálatok eredményei (az ok elôfordulása a mentességet igénylô víztestek %-ában) .. 83
7-1. táblázat: Pénzügyi megtérülési mutató az elszmólt költségek alapján (nettó bevétel/üzemi ráfordítás) 2005. (%) .. 89
8-1. táblázat: Tápanyag és szervesanyag terhelések csökkentését célzó intézkedések alkalmazása a vízfolyás víztesteknél ... 110
8-2. táblázat: Tápanyag és szervesanyag terhelések csökkentését célzó intézkedések alkalmazása a vízfolyás víztesteknél ... 111
8-3. táblázat: Tápanyag és szervesanyag terhelések csökkentését célzó intézkedések alkalmazása a vízfolyás víztesteknél ... 112

17. ábra: A porózus víztestek elvi modellje (Tóth József ábrája nyomán) ... 26
18. ábra: A porózus víztestek elvi modellje (Tóth József ábrája nyomán) ... 26
18. ábra: A porózus víztestek elvi modellje (Tóth József ábrája nyomán) ... 26
18. ábra: A porózus víztestek elvi modellje (Tóth József ábrája nyomán) ... 26
8-4. táblázat: Az egyéb szennyezések megelőzése, kárelhárítása, kármentesítése érdekében tett intézkedések alkalmazása a vízfolyás víztesteknél... 116
8-5. táblázat: Az egyéb szennyezések megelőzése, kárelhárítása, kármentesítése érdekében tett intézkedések alkalmazása a felszín alatti víztesteknél... 116
8-6. táblázat: Vízfolyások hidromorfológiai állapotát javító intézkedések alkalmazása vízfolyás víztesteknél 121
8-7. táblázat: Állóvízek hidromorfológiai állapotát javító intézkedések alkalmazása az állóvíz víztesteknél 122
8-8. táblázat: A fenntartható vízhasználatokra vonatkozó intézkedések alkalmazása vízfolyás víztesteknél 124
8-9. táblázat: A fenntartható vízhasználatokra vonatkozó intézkedések alkalmazása az állóvíz víztesteknél 125
8-10. táblázat: A fenntartható vízhasználatokra vonatkozó intézkedések alkalmazása a felszín alatti víztesteknél ... 125
8-11. táblázat: A vizes élőhelyekre vonatkozó intézkedések alkalmazása a vízfolyás víztesteknél............................ 129
8-12. táblázat: A vizes élőhelyekre vonatkozó intézkedések alkalmazása az állóvíz víztesteknél......................... 129
8-13. táblázat: A vizes élőhelyekre vonatkozó intézkedések alkalmazása a felszín alatti víztesteknél, Mrd Ft.................. 130
8-14. táblázat: Az alapintézkedések beruházási költsége, országos Mrd Ft... 132
8-15. táblázat: Előkészítő és átfogó intézkedések költségei, Mrd Ft1.. 133
8-16. táblázat: A beruházási, fejlesztési jellegű kiegészítő intézkedések költsége, Mrd Ft1................................. 134
8-17. táblázat: A beruházási, fejlesztési jellegű kiegészítő intézkedések költsége, alegységi Mrd Ft..................... 135

Mellékletek

1-1. melléklet: Népességstatisztika
1-2. melléklet: Víz keretirányelvvel kapcsolatos határvízi egyeztetések jegyzőkönyvei
1-3. melléklet: Települések alegységek
1-4. melléklet: Vízfolyás típusok referencia jellemzői
1-5. melléklet: Állóvíz típusok referencia jellemzői
3-1. melléklet: Közelső ívővízbázisok főbb jellemzői
3-2. melléklet: Az ásvány- és gyógyvizeket, valamint az élelmiszeripari célokat szolgáló vízbázisok főbb jellemzői
3-3. melléklet: Víztestek alak, természetvédelmi szempontból óltalom alatt álló területek
4-1. melléklet: Felszín alatti vizek monitoring programja
4-2. melléklet: Felszín alatti vizek monitoring programja
4-3. melléklet: Védett területek monitoring programja
4-4. melléklet: Jogszabályok, szabványok, műszaki előírások
4-5. melléklet: Víz Keretirányelv felszín alatti vizek monitoring programja – Terepi jegyzőkönyvek
4-6. melléklet: Víz Keretirányelv felszín alatti vizek monitoring programja – Terepi jegyzőkönyvek
5-1. melléklet: Felszín alatti víztestek állapota
5-2. melléklet: Felszín alatti víztestek mennyiségi állapota
5-3. melléklet: Háttér- és küszöbértékek a felszín alatti víztesteknél
5-4. melléklet: Nitrát-szennyezett területek aránya
5-5. melléklet: Felszín alatti vizek kémiai minősítése
5-6. melléklet: Vízbázisok veszélyeztetettsége
5-7. melléklet: Nitrát-érzékeny területek aránya és nitrát-szennyezettségi viszonyok
5-8. melléklet: Víztől függő védett természeti területek állapota
6-1. melléklet: Mentességek indoklása útmutató
6-2. melléklet: Céllok, intézkedések
7-1. melléklet: Megfizethetőségi mutatók
8-1. melléklet: Alap- és további alapintézkedések részletes ismertetése
8-2. melléklet: Kiegészítő és pótlólagos intézkedések részletes ismertetése
8-3. melléklet: Műszaki intézkedések tartalma
9-1. melléklet: Alegységi szintű programok, tevérek és projektek
10-1. melléklet: Alegységi fórum emlékeztető
10-2. melléklet: Tematikus fórumok
10-3. melléklet: Vélemények feldolgozása
Térkép mellékletek

1-1. térkép melléklet: Átnézeti térkép
1-2. térkép melléklet: Területhasználat
1-3. térkép melléklet: Vízfolyás víztestek kategóriái
1-4. térkép melléklet: Vízfolyás víztestek típusai
1-5. térkép melléklet: Állóvíz víztestek kategóriái
1-6. térkép melléklet: Állóvíz víztestek típusai
1-7. térkép melléklet: Felszín alatti víztestek – Sekély porózus és sekély hegyvidéki
1-8. térkép melléklet: Felszín alatti víztestek – Porózus és hegyvidéki
1-9. térkép melléklet: Felszín alatti víztestek – Porózus termál
1-10. térkép melléklet: Felszín alatti víztestek – Karszt és termálkarszt
3-1. térkép melléklet: Ivóvízkivételek védőterületei
3-2. térkép melléklet: Tápanyag- és nitrátérzékeny területek
3-3. térkép melléklet: Természetes fürdőhelyek és fürdővizek
3-4. térkép melléklet: Védett természeti területek
3-5. térkép melléklet: Natura 2000 és egyéb védett területek
4-1. térkép melléklet: Felszíni vízer monitoringja
4-2. térkép melléklet: Felszín alatti víztestek monitoringja – Sekély porózus és sekély hegyvidéki
4-3. térkép melléklet: Felszín alatti víztestek monitoringja – Porózus és hegyvidéki
4-4. térkép melléklet: Felszín alatti víztestek monitoringja – Porózus termál
4-5. térkép melléklet: Felszín alatti víztestek monitoringja – Termál és termálkarszt
4-6. térkép melléklet: Védett területek monitoringja
5-1. térkép melléklet: Felszíni víztestek ökológiai minősítése
5-2. térkép melléklet: Felszíni víztestek osztályozása – Biológiai elemek
5-3. térkép melléklet: Felszíni víztestek osztályozása – Fizikai-kémiai elemek
5-4. térkép melléklet: Felszíni víztestek osztályozása – Hidromorfológiai elemek
5-5. térkép melléklet: Felszíni víztestek kémiai minősítése
5-6. térkép melléklet: Felszín alatti víztestek mennyiségi állapota – Sekély porózus és sekély hegyvidéki
5-7. térkép melléklet: Felszín alatti víztestek mennyiségi állapota – Porózus és hegyvidéki
5-8. térkép melléklet: Felszín alatti víztestek mennyiségi állapota – Porózus termál
5-9. térkép melléklet: Felszín alatti víztestek mennyiségi állapota – Termál és termálkarszt
5-10. térkép melléklet: Felszín alatti víztestek kémiai állapota – Sekély porózus és sekély hegyvidéki
5-11. térkép melléklet: Felszín alatti víztestek kémiai állapota – Porózus és hegyvidéki
5-12. térkép melléklet: Felszín alatti víztestek kémiai állapota – Porózus termál
5-13. térkép melléklet: Felszín alatti víztestek kémiai állapota – Termál és termálkarszt
5-14. térkép melléklet: Nitrátérzékeny és –szennyezett területek
5-15. térkép melléklet: Természetes fürdőhelyek és fürdővizek
Bevezető

A víz életünk nélküli zavartatja, és használatára életünket legfontosabb tényezője. Miután a víz nem korlátozottan áll rendelkezésünkre, ezért ez a vízhasználók költségekkel jár. A folyók, patakok, tavak víze, valamint a felszín alatti víz nemcsak természeti, hanem társadalmi, gazdasági értékeket is hordoz, jövedelemszerzési és ráfordítási lehetőségeket kínál. Ez az erőforrás véges, ezért ahhoz, hogy a jövőben is mindenkinek jusson tiszta ivóvíz, és a folyók, tavak tájaink, életünk maradhassanak, erőfeszítéseket kell tennünk a felszín és a felszín alatti víz megvédéséért, állapotuk javításáért.

Ez a felismerés vezetett az Európai Unió új vízpolitikájának, a „Víz Keretirányelvnek” (2000/60/EK irányelve, továbbiakban VKI) kidolgozásához, mely 2000. december 22-én lépett hatályba. Magyarország - elhelyezkedésének miatt – alapvetően érdekelte abban is, hogy a Duna nemzetközi vízgyűjtőkerületben (azaz a teljes Duna medencében) mielőtt teljesüljenek a VKI célkitűzései. A Víz Keretirányelv célja, hogy 2015-re a felszín és felszín alatti vizek „jó állapotba” kerüljön. A keretirányelv szerint a „jó állapot” nemcsak a víz tisztaságát jelenti, hanem a vízhez köthető élőhelyek minél zavarlanabb állapotát, illetve a megfelelő vízmennyiséget is.

A Víz Keretirányelv általános célkitűzései a következők:

- a vizekkel kapcsolatban lévő élőhelyek védelme, állapotuk javítása,
- a fenntartható vízhasználat elősegítése a hasznosítható vízkészletek hosszú távú védelmével,
- a vízminőség javítása a szennyezőanyagok kibocsátásának csökkentésével,
- a felszín alatti vizek szennyezésének fokozatos csökkentése, és további szennyezésük megakadályozása,
- az árvizeknek és aszályoknak a vizek állapotára gyakorolt kedvezőtlen hatásainak mérséklése.

Bevezető
VÍZGYŰJTŐ-GAZDÁLKODÁSI TERV
3-3 Fekete-víz vízgyűjtő

1 VÍZGYŰJTŐK ÉS VÍZTESTEK JELLEMMZÉSE

A Fekete-víz tervezési alegység a Dél-dunántúl déli részén található, mely Baranya megye középső és nyugati illetve Somogy megye délkeleti részét foglalja magába. Ezzel területének teljes egészére a Dél-dunántúli Környezetvédelmi és Vízügyi Igazgatóság működési területére esik.

Az alegység Magyarország 4 fő részvízgyűjtője közül a Dráva részvízgyűjtőhöz tartozik, mely 3 alegységre: a Murára, a Rinya-mentére és a Fekete-vízre tagolódik. Míg a Mura a részvízgyűjtő északnyugati, a Fekete-víz a délkeleti alegysége. A Rinya-mente a kettő között helyezkedik el. Az alegységet délen a terület fő befogadójaként a Dráva folyó, illetve a magyar-horvát országhatár, északon a Kapos, keleten pedig az Alsó-Duna jobb part tervezési alegység határolja.

Az alegység névadója a terület vízfolyásainak legjelentősebb részét befogadó és a Drávába vezető Fekete-víz, de az alegységhez tartozik a Korcsina-főcsatorna, a Sellyei-Gürü, a Gordisai-csatorna, valamint a Dráva ezen szakaszának közvetlen vízgyűjtője is.

1-1. ábra: A tervezési terület - A Fekete-víz tervezési alegység

1.1 Természeti környezet

A vízgyűjtő természeti adottságai alapvetően meghatározzák a tervezési területen lévő víztestek környezetét. A víztest állapotértékelése, a „jó állapot” meghatározása, a környezeti célkitűzések, a műszakilag lehetséges intézkedések mind függenek a természet adta lehetőségeiktől. A vízgyűjtő-gazdálkodási tervezés elméletben, külső közülményektől mentes, vízválasztókkal lehatárolt vízgyűjtőkön történik, azonban a gyakorlatban politikai és igazgatási határokat is figyelembe kellett venni a tervezési területek meghatározásakor. Így e fejezetben uralkodó a tervezési terület természeti tulajdonságai találhatók meg, de a határok átnyúló hatások figyelembe vételével.
1. fejezet Vízgyűjtők és víztestek jellemzése

1.1.1 Domborzat, éghajlat

A Drávamenti-síkság 96 és 110 mBf-i magasságú tőkéletes síkság. Az ártéri síkságot futóhomokkal fedett enyhén hullámos síksági részekkel tagolt, alacsony, ármentes síkság övezi. Jellemző formák az elhagyott meanderek.

A Fekete-víz síkja nagyrészt teraszos, Déli részén futóhomokkal fedett hordalékkúp-síkság, melynek átlagos reliefe 4 m/km². Enyhén tagolt és enyhén hullámos síksági részek alkotják, helyenként Ny-K irányú futóhomok felhalmozódásokkal. A terület igen belvízveszélyes, ezért mezőgazdasági hasznosíthatósága is korlátozott.

A tágabb értelemben vett Dráva-árokrendszer peremi tagjának tekinthetjük a Pécsi-síkságot, melyen jellemző vízfolyásai a Pécsi-víz és a Magyarürögi-víz, melyek a felsőpannoniai üledéksoron máig tartó hordalékkúp-képző tevékenységet folytatnak. A síkság tagoltsága gyenge, az átlagos relief többnyire 2m/km² alatt van.

A Dél-Baranyai-dombság NY-i, lösszel fedett, hordalékkúpos hegylábfelszín része szintén a területhez tartozik. A völgyhálózatot az ÉNY-DK irányú töréshálózat határozza meg.

A Mecsek hegység a Zengőn, a Tubesen és a Jakabhegyen tetőző, paleozoós alapzatok, jórészt mezozóos közetekből épül fel.

A vízgyűjtő 1800 km²-nyi területén a kisebb (kb. 40%) dombvidéki és a nagyobb, síkvidéki jellegű domborzat váltakozik, és ennek eltérő hatása érvényesül az éghajlatban is. A csapadék sokéves területi átlaga 712 mm, ami az É-i mecseki területeken 760 mm körüli, míg a D-i területeken 690-700 mm-nyi. A csapadék sokévi eloszlása a minimumok január - februárban a jellemzők 40 - 44 mm közötti értékkel, míg a sokéves havi maximum júniusban a jellemző 82 mm értékké.

Az évi középhőmérséklet 10,4-10,6 °C körüli a K-i, D-i területeken, Ny-on, É-on kissé hűvösebb 10,2-10.0 °C.

Az eloszlás a minimumok felettet a januárban, februárban a jellemzők 40 - 44 mm közötti értékké, míg a sokéves havi maximum júniusban a jellemző 82 mm értéké.

Az éves napsütéses órák száma kb. 2000 óra. A K-i területek ariditási indexe 1,00 körül van, míg a Ny-i részeken 0,9. A téli hóval borított napok száma kb. 35.

1.1.2 Földtani, talajtakaró

A Mecsek hegyességét legnagyobb kiterjedésben perm-triasz-jura üledékek építik fel, de képződményei között az ókor több százmillió éves kristályos közeteit kezdve a kréta vulkanitokon át egészen a jelenkor mésztufa lerakódásig szinte minden időszak emlékei megtalálhatók.

A tervezési terület természetföldrajzi témájú átnézeti térképe az 1-1. térkép mellékletben található.
Az Ormánság területén a pleisztocén rétegsorra futó homok települt melynek formáit a terület utolsó süllyedésekor a Dráva jórészt szétrombolta. A késő glaciálisban a terület magasártérré vált és újra kialakultak rajta a futóhomokformák.

1-2. ábra: Jellemző felszín közeli közetkifejlődés részarányai a Fekete-víz tervezési alegység területén

1-1. táblázat: Jellemző felszín közeli közetkifejlődés Magyarország, a Dráva részvízgyűjtő és a Fekete-víz tervezési alegység területén

<table>
<thead>
<tr>
<th>Közettípus</th>
<th>Magyarország km²</th>
<th>Dráva részvízgyűjtő km²</th>
<th>Fekete-víz tervezési alegység km²</th>
</tr>
</thead>
<tbody>
<tr>
<td>feltöltés</td>
<td>1027</td>
<td>≈ 0</td>
<td>0</td>
</tr>
<tr>
<td>agyag</td>
<td>1933</td>
<td>≈ 0</td>
<td>0</td>
</tr>
<tr>
<td>finom közetliszt, agyag</td>
<td>18677</td>
<td>1240</td>
<td>118</td>
</tr>
<tr>
<td>vastag finom közetliszt, agyag</td>
<td>16993</td>
<td>967</td>
<td>12</td>
</tr>
<tr>
<td>durva közetliszt</td>
<td>8689</td>
<td>708</td>
<td>557</td>
</tr>
<tr>
<td>vastag durva közetliszt</td>
<td>7391</td>
<td>1506</td>
<td>1236</td>
</tr>
<tr>
<td>homok</td>
<td>14262</td>
<td>537</td>
<td>83</td>
</tr>
<tr>
<td>vastag homok</td>
<td>11743</td>
<td>878</td>
<td>220</td>
</tr>
<tr>
<td>kavics</td>
<td>380</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>vastag kavics</td>
<td>191</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>homokkő, breccsa</td>
<td>1633</td>
<td>176</td>
<td>176</td>
</tr>
<tr>
<td>mérszék</td>
<td>1326</td>
<td>118</td>
<td>118</td>
</tr>
<tr>
<td>márga</td>
<td>3895</td>
<td>≈ 0</td>
<td>0</td>
</tr>
<tr>
<td>dolomit</td>
<td>2799</td>
<td>≈ 0</td>
<td>0</td>
</tr>
<tr>
<td>vulkanit</td>
<td>2845</td>
<td>≈ 0</td>
<td>0</td>
</tr>
<tr>
<td>mélységi magmás</td>
<td>179</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>metamorfit</td>
<td>233</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Magyarország egyik legfontosabb természeti erőforrása a talaj. A termőtalaj bio-geokémiai környezeteket meghatározó környezeti elem, a biológiai produkció legmegtalálóbb alapja és egyben helye. A talaj - típusra jellemző puffer képessége alapján - közvetve hozzájárul a felszín alatti vízkészletek, földtani képződmények védelméhez, az azokat érő terhelés csökkentéséhez.

A Dráva mentén meghatározó talajtípus az ártér öntést réti talaja, melynek mechanikai összetétele homokos vályog, vagy vályog. Területén sok az erdő. Az alluvialis üledékeken képződött talajok mellett kis területen előfordulnak agyagbemosódásos barna erdőtalajok, barnaföldek is.

1-3. ábra: Jellemző talajtípusok aránya a Fekete-víz tervezési alegység területén

![Diagram showing the percentage of soil types in the Fekete-víz design unit](Forrás: TAKI, AGROTOPO)

1-2. táblázat: Jellemző talajtípusok Magyarországon, a Dráva rész-vízgyűjtő és a Fekete-víz tervezési alegység területén

<table>
<thead>
<tr>
<th>Talajtípus</th>
<th>Magyarország %</th>
<th>Dráva rész-vízgyűjtő %</th>
<th>Fekete-víz tervezési alegység %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Víz vagy nincs adat</td>
<td>1,17</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Váztalajok</td>
<td>8,16</td>
<td>0,27</td>
<td>0,44</td>
</tr>
<tr>
<td>Kőzethatású talajok</td>
<td>2,81</td>
<td>1,13</td>
<td>2,74</td>
</tr>
<tr>
<td>Barna erdőtalajok</td>
<td>34,26</td>
<td>69,33</td>
<td>49,62</td>
</tr>
<tr>
<td>Láptalajok</td>
<td>1,42</td>
<td>0,43</td>
<td>0</td>
</tr>
<tr>
<td>Csernozjom talajok</td>
<td>22,13</td>
<td>2,79</td>
<td>6,79</td>
</tr>
<tr>
<td>Szikes talajok</td>
<td>6,00</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Réti talajok</td>
<td>21,23</td>
<td>26,02</td>
<td>40,32</td>
</tr>
<tr>
<td>Mocsári erdők talajai</td>
<td>0,09</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Öntéstalajok</td>
<td>2,73</td>
<td>0,03</td>
<td>0,08</td>
</tr>
</tbody>
</table>

Forrás: TAKI, AGROTOPO

1 Az AGROTOPO az MTA Talajtani és Agrokémiai Intézetében kiépített térinformatikai alapú Agrotopográfiai térképsorozat tematikus adatból kialakított számítógépes adatbázis, amely EOTR szabványos, 1:100.000 méretarányú és országos adatokat tartalmaz. Az adott felbontásban homogén agroökológiai egységekhez a termőhelyi talajadottságokat meghatározó főbb talajtani paraméterek tartoznak.
1.1.3 Vízföldtan

A terület földtani felépítésében - a felszín alatt - medencealjzatként paleozoikumi magmás, metamorf és üledékes középek, illetve mezozoos üledékes kőzetek vesznek részt. Ezekre jellemzően pannoniai korú, tengeri üledékek települtek, amit jelentős vastagságot, pleisztocénkori üledéktakaró fed. A völgyhálózat töréses szerkezetre utal, a legfiatalabb törések a pleisztocén végén alakultak ki.

A fő felszín alatti vízadó összlet a felső-pannoniai rétegcsoport, melynek homokos rétegei biztosítják gyakorlatilag a terület kútjainak utánpótlódását. A kisebb mélységű kútak pleisztocén-holocén korú homokrétegeket csapolnak meg, főleg a Dráva völgyében.

Vízzáró agyagréteg hiányában a homokos felszín miatt a csapadékokkal együtt a szennyeződések is bejuthatnak, ezért a térségben sok az üzemelő, sérülékeny ivóvízbázis, pl. Sellye, Kórós, Magyarmecske, stb.

A termálkarszt a területen kisebb jelentőségű, bár Szentlőrincen energetikai hasznosítását is tervezik. A pt.3.1.termál víztestet a pettendi és a sellyei kútak tárták fel.

A Villányi hegységen kisebb jelentőségű, a termálkarszt ellenére, hogy Szentlőrincen energetikai hasznosítását is tervezik. A pt.3.1.termál víztestet a pettendi és a sellyei kútak tárták fel.

1.1.4 Vízrajz

A Dráva magyarországi vízgyűjtője 6348 km², ami a teljes vízgyűjtő 15,8 %-a. A folyó a magyarországi területen két szakaszra osztható, ebből a Dráva alsó elnevezésű szakasz a Fekete víz befogadója.

Annak ellenére, hogy a közvélemény szemében a folyó egy természetes és jó állapotú vízként jelenik meg, a meder erős szabályozott. A felvízi országok duzzasztó művei (erőművek) igen erős hatást adnak át még erre a szakaszra és amellett, hogy folyamatos a szabályozottság. A Dráva alsó víztesten a medersüllyedés folyamata egyértelműen kimutatható annak következményeivel együtt (mellékágak lefúlódása, feliszapolódása, stb.). Mindkét oldalon árvédelmi művek épültek, melyek behatárolják a hullámteret. A víztest teljes hosszban jelenleg hajóútként szerepel a kétoldali egyezményekben, amelynek felülvizsgálata szükséges. Magyar oldalon nemzeti park működik.

A Dráva jellemző vízhozamai Drávaszabolcsnál a következők:

\[
\begin{align*}
\text{Max.:} & \quad 3090 \text{ m}^3/\text{s} \\
\text{Min.:} & \quad 127 \text{ m}^3/\text{s} \\
\text{Átlag:} & \quad 523 \text{ m}^3/\text{s}
\end{align*}
\]

A vízgyűjtő 5 részvízgyűjtőre osztható, ebből a Fekete víz, valamint az Egyesült Gyöngyös fő ága síkvidéki (10%), a Bükkösdi víz kis részben hegyvidéki (4%), a többi terület (86%) dombvidéki jelleggel bír. A vizek folyási iránya az É-D-i lejtéssel a Dráva völgye. A vízfolyások szélesen elterülő részvízgyűjtőkkel rendelkeznek, amik legyezőszerűen kapcsolódnak egymásba. A Drávához közéleből lévő vízfolyások síkvidéki jellegűek, medrück általában módosított, vagy mesterséges kialakítású.

Az északi területeken alacsonyabb dombvidéki a jellemző, a Bükkösdi-, Almás-, és Gyöngyös patak felső szakasza, a Zselic déli- és a Mecsek nyugati lejtőin folynak. A Pécsi víz és mellékágai érintik a Dél-baranyai dombság területét is.

A dombvidéki területen számtalan halastó, tározó létesült a Gyöngyösökön, az Almás patakon, a Pécsi vizen. A vízgyűjtő legnagyobb vízfélterületi a Cserő, Merény és Somogyapáti környéki tavak, valamint a Sumonyi tórendszer. A vízfolyások vízjárása eltérő. A dombvidéki területeken heves árhullámok alakulnak ki, amik a sík területeken ellapulnak. Az árvizes időszak a tavaszi és nyár eleji, míg a kisvízesek az augusztusi, illetve őszi hónapok. A nyári szárazabb időszakban a
dombvidéki területek kis patakai kiszáradnak, de az Egyesült Gyöngyös Kétújfalu térségében is gyakran erre a sorsra jut. A hordalékmozgást a tározók, halastavak megszűrik, így az alsóbb szakaszok hordalékszállítása elenyésző.

Az öt rész-vízgyűjtő vízfolyásainak sokéves középhozama az alábbi:

<table>
<thead>
<tr>
<th>Vízforrás</th>
<th>Mérték</th>
<th>Vízfolyam</th>
<th>Hordalékszám</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fekete víz – Kémes</td>
<td>4,347 m³/s</td>
<td>Almás patak - Csertő</td>
<td>0,378 m³/s</td>
</tr>
<tr>
<td>E. Gyöngyös – Kétújfalu</td>
<td>1,270 m³/s</td>
<td>Pécsi víz – Kémes</td>
<td>1,969 m³/s</td>
</tr>
<tr>
<td>Bükkösdi víz – Szentlőrinc</td>
<td>0,334 m³/s</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1.1.5 Élővilág

Magyarország nem különálló természetföldrajzi egység, az országhatár sehol sem jelent természetes tájhatárt: A VKI XI. melléklete szerint meghatározott ökorégiók közül Magyarország a „Magyar Alföld” ökorégióban helyezkedik el.

Az erdők fontos szerepet töltnek be a vízgyűjtők hidrológiájában, mivel befolyásolják a csapadék lefolyását, beszivárgását. Jelenleg tervezési alegység területén több mint negyedét erdő borítja, többnyire keményfás lombhullató erdők. Jelentős részét a tájidegen fafajok ültetvényei (akác, fenyőfélék) teszik ki. A különböző fafajok vízhasználatát általában kisebb, mint a lágy lombos fafajoké és a fenyőerdő vízvisszatartó képessége igen jelentős, szemben a lombhullatókéval (különösen télen). Az erdők mintegy tized része védett, azonban a főként az akáckép falvizsgálatokat a vízhatározatosan nagyobb, mint 5%-a.

1.3. táblázat: Az erdők fafaj és védettség szerinti adatai, Magyarország, a Dráva részvízgyűjtő és a Fekete-víz tervezési alegység területén

<table>
<thead>
<tr>
<th>Erdőterület részaránya</th>
<th>Magyarország %</th>
<th>Dráva részvízgyűjtő %</th>
<th>Fekete-víz tervezési alegység %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Erdőterület összesen</td>
<td>16</td>
<td>27,8</td>
<td>25,2</td>
</tr>
<tr>
<td>Ebből:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>kemény lombos</td>
<td>44,7</td>
<td>53,3</td>
<td>57,9</td>
</tr>
<tr>
<td>akác</td>
<td>25</td>
<td>14,7</td>
<td>18,7</td>
</tr>
<tr>
<td>lágy lombos</td>
<td>17,4</td>
<td>18</td>
<td>17,7</td>
</tr>
<tr>
<td>fenyő</td>
<td>12,7</td>
<td>13,7</td>
<td>5,6</td>
</tr>
<tr>
<td>vörösfenyő</td>
<td>0,2</td>
<td>0,3</td>
<td>0,1</td>
</tr>
<tr>
<td>Ebből:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>védett erdő</td>
<td>16,6</td>
<td>8,8</td>
<td>10,9</td>
</tr>
<tr>
<td>fokozottan védett erdő</td>
<td>3,2</td>
<td>2,7</td>
<td>5,2</td>
</tr>
<tr>
<td>nem védett erdő</td>
<td>80,2</td>
<td>88,6</td>
<td>83,9</td>
</tr>
</tbody>
</table>

Forrás: MgSzH Központ, Erdészeti Igazgatóság
Védendő természeti értékek
A terület természeti értékeket bővelkedik. A Dráva bal parti területei a Duna-Dráva Nemzeti Park területének részét képezik.
A Nemzeti Park megalakulására 1996 áprilisában került sor, területén kiemelt jelentősége van a NATURA 2000 területeknél, az ex lege védett területeknél, valamint a térségi ökológiai folyosóknak. Külön említést érdemelnek a Dráva mellett meglévő mellé- és holtágak, amelyek ugyan zömmel nem védettek, de mindenféle jelentős vízes élőhelynek tekintendők.

1.2 Társadalmi és gazdasági viszonyok
A vízgyűjtőn élők, a vízhasználók szocio-gazdasági körülményei alapvetően meghatározzák a tervezési területen lévő víztestek állapotát és a megvalósítható intézkedések körét. Ugyanakkor a társadalmi és gazdasági viszonyok közismerten függenek a vizek mennyiségétől és minőségétől, a környezet a fenntartható fejlődés alapeleme. A vízgyűjtő-gazdálkodási tervezés során a társadalom és a gazdaság jelenlegi helyzetét vesszük figyelembe, valamint a tervidőszakban várható változásokkal számolunk (a prognózist a terv 7. fejezete tartalmazza).

1.2.1 Településhálózat, népességföldrajz
A vízgyűjtő Baranya megyében található, egy kis része átnyúlik Somogy megyébe, 7 kistérség (Pécsi, Sellyei, Barcsi, Kaposvári, Siklósi, Szentlőrinci, Szigetvári) fedi le. A részvízgyűjtő 177 település belterületét érinti, ezekből 8 város (187 082 fő, 5 %), 169 község (50 842 fő, 95 %). Az összlakosság (256 250 fő) 73 %-a vásolakó, a népsűrűség 97 fő/km². A nagyobb települések közé tartozik Pécs (145 579 fő), Szigetvár (10 948 fő), Siklós (9 964 fő), Szentlőrinc (7 060 fő), Kozármisleny (5 684 fő), Harkány (3 831 fő) és Beremend (2 065 fő).
A népességstatisztikát az 1-1. melléklet tartalmazza.

1.2.2 Területhasználat
A vízgyűjtők környezeti állapotának, a víztestek diffusion szennyezésből származó terhelésénak, valamint többek között a csapadékból származó lefolyás és beszívárgás becslések a területhasználatot figyelembe kell venni.
Az alábbi ábrán és táblázatban, valamint az 1-2. térkép mellékleten bemutatott területhasználati kategóriák által részletesen bemutatott térinformatikai feldolgozások készültek a CORIN CLC50 fedvény segítségével. Az ábrázolás céljából összevont kategóriák a következők:

- **Belterület:** lakott területek (összefüggő és nem összefüggő település szervezet), ipari, kereskedelmi területek és közlekedési hálózatok, bányák, lerakóhelyek és építési munkahelyek, mesterséges, mesterséges zöldterületek.
- **Szántó:** szántóföldek (nem öntözött szántóföldek, állandóan öntözött területek, rizsföldek).
- **Szőlő, gyűmölcsös:** állandó növényi kultúrák (szőlők, gyűmölcsösök, bogyósok).
- **Vegyes mezőgazdasági:** vegyes mezőgazdasági területek (egynyári kultúrákkal öntözésen, komplex művelési szerkezet, pl. szőlőhegyek, zártkertek, elsődlegesen mezőgazdasági területek, jelentős természetes formációkkal, mesterséges, mesterséges területek).
- **Rét, legelő:** legelők (rét/legelő), cserjés és/vagy lágyszárú növényzet (természetes gyepek, természettől közeli rétek, átmeneti erdő-szerű területek), növényzet nélküli, vagy kevés növényzetet fedett nyílt területek.
- **Erdő:** erdők (lomblevelű erdők, tűlevelű erdők, vegyes erdők).
- **Vizenyős terület:** belső (szárazföldi) vizenyős területek (szárazföldi mocsarak, tőzeglápos).
- **Álló- és folyóvíz:** kontinentális vizek (folyóvizek, vízi utak, állóvizek).

1-4. ábra: A területhasználat tájegységi átlagértékei

![Diagram showing the percentage of land use categories](image)
A belterület kategorióiába sorolt mesterséges felületek aránya 5 %.

A mezőgazdasági művelés alatt álló terület az alegység területének 60 %-a. Ebből a legnagyobb területet a szántók foglalják el (55 %), a szőlő-gyümölcsös 2 %, az egyéb kultúrák 3 %-ot foglalnak el. A szőlőterületeken belül a Pécs-Mecsekalja történelmi borvidék jelentősége a területarányt meghaladja, de a Szigetvár környéki szőlőszettek is jó minőségűkről ismertek.

A szántóföldi művelés mellett fontos a rét-legelőgazdálkodás is, ez a terület 9 %-át érinti.

A terület 24 %-a erdő, amelynek további bővülése várható.

A gyenge minőségű szántók erdősítését EU-pályázat is elősegíti.

Az álló-és folyóvizek területe 1 %-ot foglal el, a hozzájuk kapcsolódó, vízjárta területek aránya is csak 1 %, ezek főleg az ormánsági területrészeken találhatók.

A CORINE CLC50 kategóriákat és a területfejlesztési ágazatban, a területrendezési tervek készítésére bevezetett módszert (9/2007 (IV.3.) ÖTM rendeletet) a vízgyűjtőkre alkalmazva elkészíthető a vízgyűjtő területek biológiai aktivitásérték minősítése. A minősítés alapja a területhasználat különböző kategóriáihoz rendelt értékmutató súlyozott átlag számítása. Ha a kapott érték 2 alatti a vízgyűjtő biológiai aktivitásértéke rossz, ha 2-4 közötti, akkor gyenge, ha az érték 4-6 között található, akkor közepes, 6 és 7,5 között jó, míg 7,5 súlyozott átlag felett a terület kiváló minősítést kap.

2 CORINE (Coordination of Information on the Environment) az Európai Unió egységes elvek alapján űr- és légi felvételek alapján készített területhasználati M=1:50 000 méretarányú térinformatikai adatbázisa
Az alegység területének legnagyobb része biológiai aktivitás szempontjából, közepes vagy szegényes minősítésű. Jó állapotú területek kicsi arányban jelen vannak, míg kiváló állapotú területek nincsenek.

1.2.3 Gazdaságföldrajz

Ipar

Mezőgazdaság
A vízgyűjtő terület felső része kb. 24% erdővel borított terület. Itt a területhasználatra erdőgazdálkodás és vadgazdálkodás jellemző. A vízgyűjtő középső és alacsony szakaszának növénytermesztés a meghatározó. A terület 54%-án szántóföldi művelés, 9 %-án legeltetés, 2%-án szőlő- és gyümölcstermesztés folyik, a fenmaradó területeken többnyire álló- vagy folyóvíz található, illetve belterület. A Fekete-víz vízgyűjtőn állatfenntartási tevékenység leginkább a halgazdaságok keretében valósul meg, a halastavak területe összesen 1 537 ha.
A Dráva mentén található területek a Dráva-sík részét képezik, és jóval egyszerűbb geomorfológiai szerkezettel rendelkeznek. A területet nagyrészt iszapos üledék borítja, a mezőgazdasági művelés kevésbé intenzív. A háztáji állattartás ma már nem jelentős.

Szolgáltatások

A térség vitathatatlan gazdasági-szolgáltatási-oktatási-kulturális központja Pécs, már csak a város méretének és közigazgatási szerepének köszönhetően is. A Pécsi Tudományegyetem nemcsak Pécs, hanem a Déln-Dunántúl regionális felsőoktatási intézménye is, egyben a legnagyobb munkáltató a városban, meghatározó szerepe van a régió minden szellemi területén, művészetekben, tudományban, gyógnyelésben egyaránt. A terület adottságai, mint a Dráva és a Mecsek közelsége, a gyógyfürdők (Siklóson, Harkányban és Szigetváron) megléte, a kiváló adottságok a szőlőtermeléshez, a turizmus egy-egy ágának szerepét erősítik. Harkány-Siklós-Villány térségében a gyógy- és bor turizmus, a természeti értékekben gazdag területeken (Mecsek, Dráva) az ökoturizmus jelent bevételei forrást. Pécselt fontos szerepe van a kulturális turizmusnak is, több évre visszatartó, hagyományokkal bíró kiemelt programok a Pécsi Napok, a Pécsi Filmszemle és Pécsi Országos Színházi Találkozó.

Úthálózat, vasút

A területen halad át a 6-os és az 58-as főút. Épülőben van az M6-os autópálya, mely Pécsét Budapesttel köti össze. A közlekedési infrastruktúra modernizációja fontos a tőke megteljesedéséhez, a munkahelyteremtéshhez, de szükséges az is, hogy egy térségben legyen elegendő képzett munkaerő, hiszen ezen együtt járulnak hozzá a gazdaság fejlődéséhez.

A belföldi törzshálózati vasúttelep (Budapest-Murakeresztúr vonalhoz csatlakozó Dombóvár-Pécs összeköttetés) összhossza 316 km, egyvágányú, villamosított. A Pécs-Barcs közti szakasz villamosítása még várat magára. A kisvasutak többsége eredetileg gazdasági célból épült, napjainkban viszont a megmaradt vonalak elsősorban az idegenforgalom szolgálatában állnak.

Szennyvízelvezetés

Baranyában 18 (városok, iparosodott települések, városmelletti kisközségek) település csatornázott, az összegyűjtött szennyvizek tisztítása 8 szennyvíztelepen (Pécs, Szigetvár Siklós, Szentlőrinc, Harkány, Selleye, Beremend, Görcsöny) történik, a bekötések aránya átlagosan 85 %. A vízgyűjtő Somogy megyei területén 5 település csatornázott, ezek Barcsi kistérségi szennyvízrendszer részei, a bekötések aránya átlagosan 75 %.

Ivóvíz szolgáltatás

A vízgyűjtő minden településén biztosított a vezetékes vízszolgáltatás, az ellátottság átlagosan 90 % feletti. A régióban a vízszennyezettség mértéke a településeken 40 %-ában meghaladja az irányadó határértékeket. Előforduló vízszennyezők a nitrit, az arzén, az ammonium, a vas és a mangán. Pécs vízellátása 4 vízbázisból biztosított, több nyomászónán keresztül. A város vízellátó rendszeréhez csatlakozik több regionális és kistérségi vízellátórendszer, amelyek a vízgyűjtő településeinek kb. 25 %-át látták el. A terület településeinek 50 %-át kistérségi társulásban, saját vízbázisról látták el, az önálló vízellátórendszer csak 25 %-ban jellemző a térségre.

Feleslegesíró irányok

koncentrációjának határérték alá való csökkenése, vagyis a 201/2001 (X. 25.) Kormányrendelet követelményeinek teljesítése. A rendelet szerint még további 69 település vízminőségének javítását kell elvégezni. Az IKMT Projekt II/B ütemében Pécsen mintegy 46 km ivóvízgerincvezeték (több mint 2300 ivóvízbekötéssel) és 78 km szennyvízhalózat (kb. 4300 bekötéssel) épül, a várható befejezés ideje 2010. december.

Jelentős víztermelések:

Ivóvíz: Pécsi Vízmű 9 400 e m³/év, Szigetvár 900 e m³/év, Szentlőrinc 207 e m³/év, Sellye 151 e m³/év

Ipari víz: Pécsi Sörgyár 106 e m³/év, Zsolnay Porcelángyár 15 e m³/év, Szigetvár, Konzervgyár 141 e m³/év

Gyógyvíz: Harkány 1 880 e m³/év, Szigetvár 74 e m³/év

Bányavíz: Mecsek-Öko Rt 1 241 e m³/év

Állattartás: Görösgal, tehenészet 55 e m³/év

1.3 A vízgyűjtő-gazdálkodási tervezés szereplői

1.3.1 Hatáskörrel Rendelkező Hatóság

Hazánkban a 2000/60/EK Víz Keretirányelv előírásainak végrehajtására a Környezetvédelmi és Vízügyi Minisztérium (KvVM, H-1011 Budapest, Fő utca 44-50.), a hatáskörrel rendelkező hatóság.

A KvVM felelők:

- a koordinációért és a vízgyűjtő gazdálkodási terv elkészítéséért
- az Európai Unió Bizottsága felé történő jelentésért

A KvVM illetékessége a Duna vízgyűjtő kerületen belül, az ország teljes területére kiterjed.

A Környezetvédelmi és Vízügyi Minisztérium feladata a stratégiai irányítás, az Európai Unió intézményeivel való kapcsolattartás, közreműködés a Duna vízgyűjtő-kerület nemzetközi tervének összeállításában, és a VKI végrehajtásáról szóló jelentések elkészítése.
1.3.2 A tervezést végző szervezetek
A vízgyűjtő-gazdálkodási tervek elkészítése az ágazati szervek feladata:

- országos tervet a Vízügyi és Környezetvédelmi Központi Igazgatóság, Budapest (VKKI) állítja össze, ugyanakkor feladata a tervezés országos koordinációja;
- részvízgyűjtő tervek elkészítéséért és a részvízgyűjtőn belül a tervezés koordinációjáért négy igazgatóság felel:
 - Duna részvízgyűjtő: Észak-dunántúli Környezetvédelmi és Vízügyi Igazgatóság, Győr
 - Tisza részvízgyűjtő: Közép-Tisza-vidéki Környezetvédelmi és Vízügyi Igazgatóság, Szolnok
 - Dráva részvízgyűjtő: Dél-dunántúli Környezetvédelmi és Vízügyi Igazgatóság, Pécs
 - Balaton részvízgyűjtő: Közép-dunántúli Környezetvédelmi és Vízügyi Igazgatóság, Székesfehérvár;
- A 42 alegységi terv elkészítése és helyi szinten az érdekeltek bevonása a területileg illetékes tizenkettő környezetvédelmi és vízügyi igazgatóság feladata.

1-5. táblázat: A tervezési alegységek

<table>
<thead>
<tr>
<th>Tervezési terület</th>
<th>Felelős</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-1 Szigetköz</td>
<td>Észak-dunántúli Környezetvédelmi és Vízügyi Igazgatóság, Győr</td>
</tr>
<tr>
<td>1-2 Rábca és a Fertő</td>
<td>Észak-dunántúli Környezetvédelmi és Vízügyi Igazgatóság, Győr</td>
</tr>
<tr>
<td>1-3 Rába</td>
<td>Nyugat-dunántúli Környezetvédelmi és Vízügyi Igazgatóság, Szombathely</td>
</tr>
<tr>
<td>1-4 Marcal</td>
<td>Észak-dunántúli Környezetvédelmi és Vízügyi Igazgatóság, Győr</td>
</tr>
<tr>
<td>1-5 Bakony-ér és Concó</td>
<td>Észak-dunántúli Környezetvédelmi és Vízügyi Igazgatóság, Győr</td>
</tr>
<tr>
<td>1-6 Általér</td>
<td>Észak-dunántúli Környezetvédelmi és Vízügyi Igazgatóság, Győr</td>
</tr>
<tr>
<td>1-7 Gerecse</td>
<td>Észak-dunántúli Környezetvédelmi és Vízügyi Igazgatóság, Győr</td>
</tr>
<tr>
<td>1-8 Ipoly</td>
<td>Közép-Duna-völgyi Környezetvédelmi és Vízügyi Igazgatóság, Budapest</td>
</tr>
<tr>
<td>1-9 Közép-Duna</td>
<td>Közép-Duna-völgyi Környezetvédelmi és Vízügyi Igazgatóság, Budapest</td>
</tr>
<tr>
<td>1-10 Duna-völgyi-főcsatorna</td>
<td>Alsó-Duna-völgyi Környezetvédelmi és Vízügyi Igazgatóság, Baja</td>
</tr>
<tr>
<td>1-11 Sió</td>
<td>Közép-dunántúli Környezetvédelmi és Vízügyi Igazgatóság, Székesfehérvár</td>
</tr>
<tr>
<td>1-12 Kapos</td>
<td>Közép-dunántúli Környezetvédelmi és Vízügyi Igazgatóság, Székesfehérvár</td>
</tr>
<tr>
<td>1-13 Észak-Mezőföld és Keleti-Bakony</td>
<td>Közép-dunántúli Környezetvédelmi és Vízügyi Igazgatóság, Székesfehérvár</td>
</tr>
<tr>
<td>1-14 Velencei-tó</td>
<td>Közép-dunántúli Környezetvédelmi és Vízügyi Igazgatóság, Székesfehérvár</td>
</tr>
<tr>
<td>1-15 Alsó-Duna jobb part</td>
<td>Dél-dunántúli Környezetvédelmi és Vízügyi Igazgatóság, Pécs</td>
</tr>
<tr>
<td>1-16 Felső-Bácska</td>
<td>Alsó-Duna-völgyi Környezetvédelmi és Vízügyi Igazgatóság, Baja</td>
</tr>
<tr>
<td>2-1 Felső-Tisza</td>
<td>Felső-Tisza-vidéki Környezetvédelmi és Vízügyi Igazgatóság, Nyíregyháza</td>
</tr>
<tr>
<td>2-2 Szamos-Kraszna</td>
<td>Felső-Tisza-vidéki Környezetvédelmi és Vízügyi Igazgatóság, Nyíregyháza</td>
</tr>
<tr>
<td>2-3 Lónyay-főcsatorna</td>
<td>Felső-Tisza-vidéki Környezetvédelmi és Vízügyi Igazgatóság, Nyíregyháza</td>
</tr>
<tr>
<td>2-4 Bodrogköz</td>
<td>Észak-magyarországi Környezetvédelmi és Vízügyi Igazgatóság, Miskolc</td>
</tr>
</tbody>
</table>
Tervezési terület | Felelős
---|---
2-5 Tokaj-hegyalja | Észak-magyarországi Környezetvédelmi és Vízügyi Igazgatóság, Miskolc
2-6 Sajó a Bódvával | Észak-magyarországi Környezetvédelmi és Vízügyi Igazgatóság, Miskolc
2-7 Hernád, Takta | Észak-magyarországi Környezetvédelmi és Vízügyi Igazgatóság, Miskolc
2-8 Bükk és Borsodi-Mezőség | Észak-magyarországi Környezetvédelmi és Vízügyi Igazgatóság, Miskolc
2-9 Hevesi-sík | Közép-Tisza-vídelmi Környezetvédelmi és Vízügyi Igazgatóság, Szolnok
2-10 Zagyva | Közép-Tisza-vídelmi Környezetvédelmi és Vízügyi Igazgatóság, Szolnok
2-11 Tarna | Észak-magyarországi Környezetvédelmi és Vízügyi Igazgatóság, Miskolc
2-12 Nagykörösi-homokhát | Közép-Tisza-vídelmi Környezetvédelmi és Vízügyi Igazgatóság, Szolnok
2-13 Kettős-Körös | Körös-vídelmi Környezetvédelmi és Vízügyi Igazgatóság, Gyula
2-14 Sebes-Körös | Körös-vídelmi Környezetvédelmi és Vízügyi Igazgatóság, Gyula
2-15 Berettyó | Tiszaántúli Környezetvédelmi és Vízügyi Igazgatóság, Debrecen
2-16 Háromas-Körös | Körös-vídelmi Környezetvédelmi és Vízügyi Igazgatóság, Gyula
2-17 Hortobágy-Berettyó | Tiszaántúli Környezetvédelmi és Vízügyi Igazgatóság, Debrecen
2-18 Nagykunság | Közép-Tisza-vídelmi Környezetvédelmi és Vízügyi Igazgatóság, Szolnok
2-19 Kurca | Alsó-Tisza-vídelmi Környezetvédelmi és Vízügyi Igazgatóság, Szeged
2-20 Alsó-Tisza jobb part | Alsó-Tisza-vídelmi Környezetvédelmi és Vízügyi Igazgatóság, Szeged
2-21 Maros | Alsó-Tisza-vídelmi Környezetvédelmi és Vízügyi Igazgatóság, Szeged
3-1 Mura | Nyugat-dunántúli Környezetvédelmi és Vízügyi Igazgatóság, Szombathely
3-2 Rinya-mente | Dél-dunántúli Környezetvédelmi és Vízügyi Igazgatóság, Pécs
3-3 Fekete-víz | Dél-dunántúli Környezetvédelmi és Vízügyi Igazgatóság, Pécs
4-1 Zala | Nyugat-dunántúli Környezetvédelmi és Vízügyi Igazgatóság, Szombathely
4-2 Balaton közvetlen | Közép-dunántúli Környezetvédelmi és Vízügyi Igazgatóság, Székesfehérvár

A tervek elkészítésében közreműködnek a területileg illetékes környezetvédelmi, természetvédelmi és vízügyi felügyelőségek, valamint a védett természeti területek tekintetében a nemzeti park igazgatások.

1.3.3 Határvízi kapcsolatok
Nemzetközi egyezmények:
74/2000. (V. 31.) Korm. rendelet a Duna védelmére és fenntartható használatára irányuló együttműködéséről szóló, 1994. június 29-én, Szófiában létrehozott Egyezmény kihirdetéséről

Kétoldalú határvízi egyezmények:
Horvát Köztársaság:
127/1996. (VII. 25.) Korm. rendelet - egyezmény a Horvát - Magyar Kormányok közötti, a vízgazdálkodási együttműködés kérdéseiről
A VKI-val kapcsolatos határvízi tárgyalásokon született jegyzőkönyveket az 1-2. melléklet tartalmazza.

1.3.4 Érintettek
A társadalom bevonása a tervezésbe három szinten történt: legszélesebb körben az alegységeken, míg részvízgyűjtő szinten megyei és régios hatáskörű, országos szinten országos hatáskörrel rendelkező állami és nem közigazgatási szervek, egyéb közigazgatási, tudományos és szakmai érdekképviseléti, továbbá állampolgári érdekképviseleti (civil) szervezetek közvetlen meglétesével.
Az alegységen megtalálható települések listáját az 1-3. melléklet tartalmazza.
A vízgyűjtő-gazdálkodási tervezés szakmai és tudományos megalapozottsága, valamint a társadalmi részvétel biztosítása érdekében a három különböző tervezési szinten az alábbi javaslattevő, véleményező testületeket hozták létre:
- a 42 tervezési alegység vízgyűjtő-gazdálkodási terveinek vonatkozásában a Területi Vízgazdálkodási Tanácsok, illetőleg azok vízgyűjtő-gazdálkodási tervezési bizottságai;
- a 4 részvízgyűjtőre vonatkozó vízgyűjtő-gazdálkodási tervek vonatkozásában a Részvízgyűjtő Vízgazdálkodási Tanácsok;
- az országos vízgyűjtő-gazdálkodási terv vonatkozásában az Országos Vízgazdálkodási Tanács.

1.4 Víztestek jellemzése
A víztest a Víz Keretirányelv egyik legfurcsábban hangzó kifejezése, azonban a megfelelő értelmezés miatt elkerülhetetlenül használandó fogalom. A vízgyűjtő-gazdálkodási tervezés legkisebb alapelemei a víztestek. Az irányelv meghatározása szerint a
- „felszíni víztest” a felszíni víznek egy olyan különálló és jelentős elemét jelenti, amilyen egy tó, egy tározó, egy vízfolyás, folyó vagy csatorna, ezeknek egy része, átmeneti víz, vagy a tengerparti víz egy szakasza., míg a
- „felszín alatti víztest” a felszín alatti víznek egy víztartón vagy víztartókon belül lehatárolható részét jelenti.
A víztest határok megállapításakor természeti, adminisztratív és politikai szempontok is szerepet játszanak. Ennek eredményeként a hagyományos folyó, tó, vagy vízföldtani tájegységgel megegyező és attól eltérő lehatárolások születtek. A hagyományossal egyező lehatárolás, amikor egy vízfolyás, vagy egy tó egy-egy víztestként lett kijelölve, felszín alatti víztesteknél (pl. a Villány-hegység) a kijelölt felszín alatti víztestek egyben különálló vízföldtani egységek is. Gyakori azonban, hogy egy folyó, vagy tó, vagy vízádó több víztestre osztódik fel. Másik véglet, a hasonló, általában önmagukban nem jelentős medrek, vízadók csoportos kijelölése víztestként, pl. Almás-patak és mellékvízfolyásai víztest.

Magyarországon, tehát a VKI fogalom meghatározásait követve, a következő víztest fajtákat találhatók meg:

- felszíni szárazföldi vizek: vízfolyás és állóvíz víztestek,
- erősen módosított kategóriába sorolt víztestek olyan felszíni vizek, amelyek az emberi tevékenység eredményeként jellegében jelentősen megváltoztak;
- a természetes felszíni vizekhez hasonló mesterséges; és
- felszín alatti víztestek.

A felszíni víztestek elhelyezkedését és besorolását kategóriánként az 1-3.- 1.-6., a felszín alatti víztesteket pedig az 1.7.- 1-10. térkép mellékletek mutatják.

1.4.1 Vízfolyás víztestek

A Víz Keretirányelve szerint a “Vízfolyás” egy olyan szárazföldi víztestet jelent, amely nagyobb részt a földfelszínen folyik, de amely útjának egy részén a felszín alatt is áramolhat.

A vízfolyás víztestek Magyarország 1:100 000-es méretarányú vízhálózat térképe alapján lettek kijelölve úgy, hogy a víztestek végpontjai mindig valamilyen jellegzetes, jól meghatározható pontban, például torkolat, vagy jelentős keresztműtárgy legyenek. A vízfolyások a típusváltásnál szakaszokra tagolódnak, vagy a kisebb vízfolyások csoportba foglalása gyakori. A VKI által előírt kötelező tipológiai elemek a tengerszint feletti magasság, a vízgyűjtő-terület nagysága, a geológia mellett választott jellemzőként a mederanyagot használta fel a magyarországi vízfolyások differenciálásához.

Az irányelv alapján - a vízfolyások esetében - a 10 km²-nél nagyobb vízgyűjtővel rendelkező víztesteket már ki kell jelölni, mint a vízhaláloztat jelentős elemét. A vízfolyások típusainak meghatározása a következő elemekre épül:

- a magassági viszonyok és a terepesés szerint elkülönített régiók: hegyvidéki, dombvidéki, síkvidéki;
- a hidro-geokémiai jelleg szerinti megkülönböztetés: szilikátos, meszes, vagy szerves;
- a mederanyag szemcsemérete alapján: durva (szikla, kőromelék, kavics, homokos kavics), közepes (durva- és finomhomok) és finom (közéltisz, agyag);
- a vízgyűjtők mérete: nagyon nagy (>10 000 km²) nagy (1000-10 000 km²), közepes (100-1000 km²), vagy kicsi (10-100 km²);
- nagyon kicsi esés (síkvidéki területeken jellemző).
1-6. táblázat: A vízfolyások típusai

<table>
<thead>
<tr>
<th>Típus száma</th>
<th>Al-ökorégió</th>
<th>Hidrogeokémiai jelleg</th>
<th>Mederanyag</th>
<th>Vízgyűjtő méret</th>
<th>Hazai hagyományos elnevezés</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>hegyvidék</td>
<td>szilikátos</td>
<td>durva</td>
<td>kicsi</td>
<td>patak</td>
</tr>
<tr>
<td>2</td>
<td>hegyvidék</td>
<td>meszes</td>
<td>durva</td>
<td>kicsi</td>
<td>patak</td>
</tr>
<tr>
<td>3</td>
<td>hegyvidék</td>
<td>meszes</td>
<td>durva</td>
<td>közepes</td>
<td>kisfolyó</td>
</tr>
<tr>
<td>4</td>
<td>dombvidék</td>
<td>meszes</td>
<td>durva</td>
<td>kicsi</td>
<td>patak</td>
</tr>
<tr>
<td>5</td>
<td>dombvidék</td>
<td>meszes</td>
<td>durva</td>
<td>közepes</td>
<td>kisfolyó</td>
</tr>
<tr>
<td>6</td>
<td>dombvidék</td>
<td>meszes</td>
<td>durva</td>
<td>nagy</td>
<td>közepes folyó</td>
</tr>
<tr>
<td>7</td>
<td>dombvidék</td>
<td>meszes</td>
<td>durva</td>
<td>Nagyon nagy</td>
<td>nagyfolyó</td>
</tr>
<tr>
<td>8</td>
<td>dombvidék</td>
<td>meszes</td>
<td>közepes-finom</td>
<td>kicsi</td>
<td>csermely</td>
</tr>
<tr>
<td>9</td>
<td>dombvidék</td>
<td>meszes</td>
<td>közepes-finom</td>
<td>közepes</td>
<td>kisfolyó</td>
</tr>
<tr>
<td>10</td>
<td>dombvidék</td>
<td>meszes</td>
<td>közepes-finom</td>
<td>nagy</td>
<td>közepes folyó</td>
</tr>
<tr>
<td>11</td>
<td>síkvidék</td>
<td>meszes</td>
<td>durva</td>
<td>kicsi</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>síkvidék</td>
<td>meszes</td>
<td>durva</td>
<td>közepes</td>
<td>kisfolyó</td>
</tr>
<tr>
<td>13</td>
<td>síkvidék</td>
<td>meszes</td>
<td>durva</td>
<td>nagy</td>
<td>közepes folyó</td>
</tr>
<tr>
<td>14</td>
<td>síkvidék</td>
<td>meszes</td>
<td>durva</td>
<td>Nagyon nagy</td>
<td>nagy folyó</td>
</tr>
<tr>
<td>15</td>
<td>síkvidék</td>
<td>meszes</td>
<td>közepes-finom</td>
<td>kicsi</td>
<td>csermely</td>
</tr>
<tr>
<td>16</td>
<td>síkvidék</td>
<td>meszes</td>
<td>közepes</td>
<td>kicsi és kisesésű</td>
<td>ér</td>
</tr>
<tr>
<td>17</td>
<td>síkvidék</td>
<td>meszes</td>
<td>közepes</td>
<td>közepes és kisesésű</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>síkvidék</td>
<td>meszes</td>
<td>közepes</td>
<td>kisfolyó</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>síkvidék</td>
<td>meszes</td>
<td>közepes</td>
<td>nagy</td>
<td>közepes folyó</td>
</tr>
<tr>
<td>20</td>
<td>síkvidék</td>
<td>meszes</td>
<td>közepes</td>
<td>nagyon nagy</td>
<td>nagyfolyó</td>
</tr>
<tr>
<td>21</td>
<td>síkvidék</td>
<td>szerves</td>
<td>-</td>
<td>kicsi</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>síkvidék</td>
<td>szerves</td>
<td>-</td>
<td>közepes</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>Duna, Gönyű felett</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>Duna, Gönyű és Baja között</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>Duna, Baja alatt</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Az alegység területén 32 db vízfolyás víztest található, melyből a természetes víztestek száma 12. Ezen víztestek a VKI tipológiának megfelelően 3-as, 8-as, 9-es, 16-os és 17-as típusúak, ahol a 3-as típusba a hegyvidéki, meszes hidrogeokémiai jellegű, durva mederanyagú és közepes vízgyűjtővel rendelkező víztestek, a 8-as és 9-es típusba a dombvidéki, meszes hidrogeokémiai jellegű, közepesen finom mederanyagú, kicsi és közepes vízgyűjtővel rendelkező víztestek, a 16-os és 17-es típusba pedig a síkvidéki, meszes hidrogeokémiai jellegű, közepesen finom mederanyagú, kicsi és kisesésű valamint közepes és kis esésű vízgyűjtővel rendelkező víztestek kerültek besorolásra. Így a 3-as típusba 1 db, a 8-as típusba 3 db, a 9-es típusba 3 db, a 16-os típusba 2 db és a 17-es típusba 3 db természetes víztest tartozik.
1-7. táblázat: Az alegység területén található természetes vízfolyás víztestek

<table>
<thead>
<tr>
<th>Rendszám</th>
<th>Víztest név</th>
<th>Kategória</th>
<th>Típus</th>
</tr>
</thead>
<tbody>
<tr>
<td>AEP263</td>
<td>Almás-patak felső</td>
<td>Természetes</td>
<td>17</td>
</tr>
<tr>
<td>AEP285</td>
<td>Aszai-árok</td>
<td>Természetes</td>
<td>8</td>
</tr>
<tr>
<td>AEP327</td>
<td>Bicsérdi-vízfolyás</td>
<td>Természetes</td>
<td>8</td>
</tr>
<tr>
<td>AEP363</td>
<td>Bükkösdi-víz és mellékvízfolyásai</td>
<td>Természetes</td>
<td>3</td>
</tr>
<tr>
<td>AEP523</td>
<td>Gordisai-csatorna és mellékvízfolyásai</td>
<td>Természetes</td>
<td>17</td>
</tr>
<tr>
<td>AEP542</td>
<td>Gyöngyös (főág) felső</td>
<td>Természetes</td>
<td>9</td>
</tr>
<tr>
<td>AEP545</td>
<td>Gyöngyös (Keleti ág)</td>
<td>Természetes</td>
<td>8</td>
</tr>
<tr>
<td>AEP570</td>
<td>Hegyadó-patak-felső és Öcsárdi-patak</td>
<td>Természetes</td>
<td>9</td>
</tr>
<tr>
<td>AEP705</td>
<td>Korcsina-főcsatorna és mellékvízfolyásai</td>
<td>Természetes</td>
<td>17</td>
</tr>
<tr>
<td>AEP875</td>
<td>Pécsi-víz középső</td>
<td>Természetes</td>
<td>9</td>
</tr>
<tr>
<td>AEP935</td>
<td>Sándor-árok</td>
<td>Természetes</td>
<td>16</td>
</tr>
<tr>
<td>AEP956</td>
<td>Sellyei-Gőrű-csatorna</td>
<td>Természetes</td>
<td>16</td>
</tr>
</tbody>
</table>

1.4.2 Állóvíz víztestek

A Víz Keretirányelv szerint a “Tó” egy szárazföldi felszíni állóvíz-testet jelent, így tavainkat állóvíz víztestekbe soroljuk.

Az állóvízeknél önálló víztestként az 50 hektárnál nagyobb, nem völgyzárógátas tavak kerültek kijelölésre. A tipológia a természetes eredetű állóvíz víztestekre vonatkozóan került meghatározásra az alábbi szempontok szerint:

1-8. táblázat: Állóvizek tipológiai szempontjai

<table>
<thead>
<tr>
<th>szempont</th>
<th>kategória</th>
<th>értéktartomány</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vízfelület kiterjedése</td>
<td>kis területű</td>
<td>0,5-10 km²</td>
</tr>
<tr>
<td></td>
<td>közepes területű</td>
<td>10-100 km²</td>
</tr>
<tr>
<td></td>
<td>nagy területű</td>
<td>>100 km²</td>
</tr>
<tr>
<td>Átlagmélység</td>
<td>sekély (nem rétegződő)</td>
<td><3 m</td>
</tr>
<tr>
<td></td>
<td>közepes mélységű (rétegződő átmeneti)</td>
<td>3-7 m</td>
</tr>
<tr>
<td></td>
<td>mély (rétegződő)</td>
<td>>7 m</td>
</tr>
<tr>
<td>Tengerszint feletti magasság</td>
<td>síkvidéki</td>
<td><200 mBf</td>
</tr>
<tr>
<td>Hidrogeokémiai jelleg</td>
<td>szerves</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>szikes</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>meszes</td>
<td>-</td>
</tr>
<tr>
<td>Nyílt vízfelület aránya</td>
<td>nyílt vízfelületű</td>
<td>nyílt vízfelület >33%</td>
</tr>
<tr>
<td></td>
<td>benőtt vízfelületű</td>
<td>nyílt vízfelület <33%</td>
</tr>
<tr>
<td>Vízborítás</td>
<td>időszakos*</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>állandó</td>
<td>-</td>
</tr>
</tbody>
</table>

Így végül az állóvizekre vonatkozó tipológia 16 természetes típust különböztet meg a fenti szempontok figyelembe vételével, melyet az alábbi táblázat mutat be.

*Időszakosnak tekinthetők az évente kiszáradó asztatikus, ill. a hazai felmérési adatok alapján az 5 évente legalább egyszer kiszáradó szemisztatikus állóvizek.
1. táblázat: Az állóvizek típusai

<table>
<thead>
<tr>
<th>Típus száma</th>
<th>Típus</th>
<th>Felület kiterjedése</th>
<th>Mélység</th>
<th>Nyílt vízfelület aránya</th>
<th>Vízborítás</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>szerves</td>
<td>kis területű</td>
<td>sekély</td>
<td>benőtt vízfelületű</td>
<td>időszakos</td>
</tr>
<tr>
<td>2</td>
<td>szerves</td>
<td>kis területű</td>
<td>sekély</td>
<td>benőtt vízfelületű</td>
<td>állandó</td>
</tr>
<tr>
<td>3</td>
<td>szerves</td>
<td>kis területű</td>
<td>sekély</td>
<td>nyílt vízfelületű</td>
<td>állandó</td>
</tr>
<tr>
<td>4</td>
<td>szikes</td>
<td>kis területű</td>
<td>sekély</td>
<td>benőtt vízfelületű</td>
<td>időszakos</td>
</tr>
<tr>
<td>5</td>
<td>szikes</td>
<td>kis területű</td>
<td>sekély</td>
<td>nyílt vízfelületű</td>
<td>időszakos</td>
</tr>
<tr>
<td>6</td>
<td>szikes</td>
<td>kis területű</td>
<td>sekély</td>
<td>benőtt vízfelületű</td>
<td>állandó</td>
</tr>
<tr>
<td>7</td>
<td>szikes</td>
<td>kis területű</td>
<td>sekély</td>
<td>nyílt vízfelületű</td>
<td>állandó</td>
</tr>
<tr>
<td>8</td>
<td>szikes</td>
<td>közepes területű</td>
<td>sekély</td>
<td>nyílt vízfelületű</td>
<td>állandó</td>
</tr>
<tr>
<td>9</td>
<td>szikes</td>
<td>nagy területű</td>
<td>sekély</td>
<td>nyílt vízfelületű</td>
<td>állandó</td>
</tr>
<tr>
<td>10</td>
<td>meszes</td>
<td>kis területű</td>
<td>sekély</td>
<td>benőtt vízfelületű</td>
<td>időszakos</td>
</tr>
<tr>
<td>11</td>
<td>meszes</td>
<td>kis területű</td>
<td>sekély</td>
<td>nyílt vízfelületű</td>
<td>időszakos</td>
</tr>
<tr>
<td>12</td>
<td>meszes</td>
<td>kis területű</td>
<td>sekély</td>
<td>benőtt vízfelületű</td>
<td>állandó</td>
</tr>
<tr>
<td>13</td>
<td>meszes</td>
<td>kis területű</td>
<td>sekély</td>
<td>nyílt vízfelületű</td>
<td>állandó</td>
</tr>
<tr>
<td>14</td>
<td>meszes</td>
<td>közepes mélységű</td>
<td>sekély</td>
<td>nyílt vízfelületű</td>
<td>állandó</td>
</tr>
<tr>
<td>15</td>
<td>meszes</td>
<td>közepes területű</td>
<td>sekély</td>
<td>nyílt vízfelületű</td>
<td>állandó</td>
</tr>
<tr>
<td>16</td>
<td>meszes</td>
<td>nagy területű</td>
<td>közepes mélységű</td>
<td>nyílt vízfelületű</td>
<td>állandó</td>
</tr>
</tbody>
</table>

Minden egyes típusra egy, az arra a típusra jellemző hidrológiai-morfológiai és fizikai-kémiai, valamint biológiai minta határozható meg. A referencia jellemzők típusonkénti leírását - biológiai, fiziko-kémiai és hidromorfológiai elemeit az 1-5. melléklet tartalmazza.

Az alegység területén természetes állóvíz víztest nem található.

1.4.3 Erősen módosított és mesterséges víztestek

A Víz Keretirányelv speciális fogalma az “erősen módosított víztest” egy olyan felszíni víztestet jelent, amely emberi tevékenységből származó fizikai változások eredményeként jellegében lényegesen megváltozott, és amelyet a tagállam ekként kijelölt. Az erősen módosított kategóriába sorolt víztestek természetes eredetűek, azonban hidrológijáuk és/vagy morfológijáuk emberi hatásra jelentősen megváltozott. Az ember által okozott változás olyan mértékű és továbbra is fenntartandó – a módosítás indokoltsága miatt -, hogy a víztest vízfolyás/állóvíz kategóriáit váltott, vagy a jó állapot nem érhető el.

A keretirányelv által használt másik fontos felszíni vizes kategória a “mesterséges víztest”, amely egy emberi tevékenységgel létrehozott felszíni víztestet jelent. Leegyszerűsítve ebbe a kategóriába azokat a víztesteket soroljuk, ahol a vízfelület létrehozása előtt szárazulat volt. Általában ebbe a csoportba sorolhatók a csatornák, bányatak és halastavak.

A természetes állapotú, az erősen módosított és a mesterséges víztestek között a határvonal meghúzása nem könnyű feladat. Gyakori például, hogy a csatornát egy régi vízfolyás medré követve alakítják ki, ezért csak nevében „mesterséges” a víztest, pl. Túr-Belvíz-főcsatorna. Az erősen módosított állapot kijelölése több lépcsőben történik:

- A víztest hidromorfológiai viszonyait jelentősen módosító beavatkozás azonosítása (a hazai értelmezés szerint az számít jelentősnek, ami a víztest eredeti típusa szerinti jó állapot elérését akadályozza).

- Ennek a beavatkozásnak a megszüntetése milyen egyéb cél/igény elérését/kielégítését veszélyezteti, és ez beletartozik-e a VKI által megadott körbe
VÍZGYŰJTŐ-GAZDÁLKODÁSI TERV
3-3 Fekete-víz vízgyűjtő

1. fejezet Vízgyűjtők és víztestek jellemzése – 21 –

(környezeti cél, hajózás, tározás ivóvíz és öntözés célra, energiatermelés, árvíz- és belvízvédelem, rekreáció, egyéb fontos célok, igények).

Meg lehet-e oldani az adott igény kielégítését más, a jó állapot elérését nem befolyásoló módon, illetve annak megvalósítása nem jár-e aránytalan költségekkel, illetve a társadalom támogatja-e?

A következő táblázat a fenti lépéseket foglalja össze. A kijelölés harmadik pontja egyelőre nem történt meg, a bizonytalan jelzők a táblázat egyes pontjainál ezt jelentik. A harmadik oszlopban ennek az elemzésnek a jelentőségét adtuk meg a döntés szempontjából, a pontosítás a tervezés későbbi fázisában lehetséges. A táblázat utolsó oszlopában az is szerepel, hogy a víztest besorolása milyen információ alapján történt.

1-10. táblázat: Az erősen módosított víztest kijelölés lépései

<table>
<thead>
<tr>
<th>A jelenlős hidromorfológiai elváltozás oka, amelynél felmerül, hogy fenn kell tartani</th>
<th>A kiemelt fontosságú cél (emberi igény)</th>
<th>Az aránytalan költségre vonatkozó elemzés jelentősége</th>
<th>A kijelölés módja</th>
</tr>
</thead>
<tbody>
<tr>
<td>Völgyzárógátas tározó</td>
<td>ivóvíz célra, árvízcsúcs csökkentésre, hűtővízre, öntözésre, üdülési és rekreációs célokra. (A halagazdasági hasznosítás nem tartozik a kiemelt célok közé!)</td>
<td>A társadalom bevonása beemeli-e a halagazdaságot az egyéb jelentős tevékenységek közé?</td>
<td>Völgyzárógátakkal jelentősen befolyásolt víztestek.</td>
</tr>
<tr>
<td>Árvízvédelmi töltések miatt elzár mellékágak, holtágak mélyáterek. (Bizonytalan!)</td>
<td>árvízvédelem</td>
<td>A mentett oldali vízpótlás megvalósíthatóságának műlik (a költségek és a társadalmi támogatottság dönti el).</td>
<td>Valamennyi víztest, amely a keresztirányú áthidalható a társadalom és a társadalmi támogatottság dönti el.</td>
</tr>
<tr>
<td>Árvízvédelmi töltések (depóniák) sikvidéken és dombvidéki nagy folyókon.</td>
<td>árvízvédelem</td>
<td>Az árvízvédelmi töltések áthelyezése általában túl nagy költséget jelent.</td>
<td>Valamennyi nagy folyó és minden sikvidéki víztest, ahol a hullámtér szélessége nem megfelelő.</td>
</tr>
<tr>
<td>Árvízvédelmi töltések (depóniák) dombvidéki kis és közepes vízfolyásokon. (Bizonytalan!)</td>
<td>árvízvédelem</td>
<td>dombvidéki kis és közepes vízfolyásokon a költségek és a társadalmi támogatottság dönti el.</td>
<td>Dombvidéki vízfolyások közül azok, ahol a hullámtér/pufferzóna túl keskeny.</td>
</tr>
<tr>
<td>Nagy folyók szabályozottsága. (Bizonytalan!)</td>
<td>árvízvédelem</td>
<td>Nagy folyók jelentős szabályozottságának megszüntetése általában túl nagy költséget jelent, enyhén szabályozott szakaszokon elképzelhető javító intézkedés – egyedileg vizsgálandó.</td>
<td>Szabályozott nagy folyók víztestei.</td>
</tr>
<tr>
<td>Belvízcsatorna, kettős működésű csatorna, öntözőcsatorna.</td>
<td>belvízvédelem, öntözési célú medertározás</td>
<td>Belvízcsatornák esetén elvileg az döntő el, hogy kialakítható-e olyan vízvisszatartáson alapuló belvízvédelem, amely nem</td>
<td>Azok a sikvidéki kis és közepes vízfolyások, amelyek betöltenek belvízvédelmi vagy öntözési (kettős</td>
</tr>
</tbody>
</table>
VÍZGYŰJTŐ-GAZDÁLKODÁSI TERV
3-3 Fekete-víz vizgyűjtő

<table>
<thead>
<tr>
<th>A jelentős hidromorfológiai elváltozás oka, amelynél felmerül, hogy fenn kell tartani</th>
<th>A kiemelt fontosságú cél (emberi igény)</th>
<th>Az aránytalan költségre vonatkozó elemzés jelentősége</th>
<th>A kijelölés módja</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Vízmegosztás. | vízenergia-termelés, árvízvédelem, regionális öntözés | Az energiatermelés jelentősége miatt a megszüntetés nem realizálható. | Energia célú elterelés miatt jelentősége befolyásolt víztestek. |

Jelentős vízbevezetések. | ökológiai célú vízpótlás | Az ökológiai célú vízpótlás fenntartása indokolt. | Azok a víztestek, ahol egyéb célú vízelvonást kell ellenőrizni. |

A vízhálózatot és a víztestek térbeli elhelyezkedését az 1-3., 1-4., 1-5. és 1-6. térképek mutatják be.

Az alegység területén található 32 db vízfolyás víztestből a természetes de erősen módosított víztestek száma 20. Ezen víztestek a VKI tipológiájának megfelelően 9-es, 14-es, 15-ös, 16-os, 18-as és 19-es típusúak, ahol a 9-es típusba a dombvidéki, meszes hidrogeológiai jellegű, közepesen finom meredanyagú, közepes vízgyűjtővel rendelkező víztestek, a 14-es típusba a síkvidéki, meszes hidrogeológiai jellegű, durva meredanyagú és nagyon nagy vízgyűjtővel rendelkező víztestek, 15-ös, 16-os, 18-as és 19-es típusba pedig a síkvidéki, meszes hidrogeológiai jellegű, közepesen finom meredanyagú, és különöző méretű vízgyűjtővel rendelkező víztestek kerültek besorolásra. Így a 9-es típusba 5 db, a 14-es típusba 3 db, a 15-ös típusba 3 db, a 16-os típusba 2 db, a 18-as típusba 8 db és a 19-es típusba 1 db erősen módosított víztest tartozik, melyek közül a dombvidéki 9-es típusú víztestek a legalsó és zárt, a síkvidéki 14-es, 15-ös, 16-os, 18-as és 19-es típusú víztestek pedig az alegység déli felére jutnak.

1-11. táblázat: Az alegység területén található erősen módosított vízfolyás víztestek

<table>
<thead>
<tr>
<th>Rendszám</th>
<th>Víztest név</th>
<th>Kategória</th>
<th>Típus</th>
</tr>
</thead>
<tbody>
<tr>
<td>AEP262</td>
<td>Almás-patak alsó</td>
<td>Erősen módosított</td>
<td>18</td>
</tr>
<tr>
<td>AEP264</td>
<td>Almás-patak és mellékvízfolyásai</td>
<td>Erősen módosított</td>
<td>9</td>
</tr>
<tr>
<td>AEP361</td>
<td>Bükkösdi-árapasztó</td>
<td>Erősen módosított</td>
<td>15</td>
</tr>
<tr>
<td>AEP362</td>
<td>Bükkösdi-víz</td>
<td>Erősen módosított</td>
<td>9</td>
</tr>
<tr>
<td>AEP438</td>
<td>Dráva alsó</td>
<td>Erősen módosított</td>
<td>14</td>
</tr>
<tr>
<td>AEP453</td>
<td>Egerszegi-csatorna</td>
<td>Erősen módosított</td>
<td>16</td>
</tr>
<tr>
<td>AEP457</td>
<td>Egyesült-Gyöngyös</td>
<td>Erősen módosított</td>
<td>18</td>
</tr>
<tr>
<td>AEP478</td>
<td>Fekete-víz</td>
<td>Erősen módosított</td>
<td>19</td>
</tr>
<tr>
<td>AEP543</td>
<td>Gyöngyös (főág) alsó</td>
<td>Erősen módosított</td>
<td>18</td>
</tr>
<tr>
<td>AEP544</td>
<td>Gyöngyös (főág) és mellékvízfolyásai</td>
<td>Erősen módosított</td>
<td>9</td>
</tr>
<tr>
<td>AEP547</td>
<td>Gyöngyös (Nyuugi ág) alsó</td>
<td>Erősen módosított</td>
<td>18</td>
</tr>
<tr>
<td>AEP546</td>
<td>Gyöngyös (Nyuugi ág) felső</td>
<td>Erősen módosított</td>
<td>9</td>
</tr>
<tr>
<td>AEP571</td>
<td>Hegyados-patak</td>
<td>Erősen módosított</td>
<td>18</td>
</tr>
<tr>
<td>AEP716</td>
<td>Göröcsőnye-csatorna</td>
<td>Erősen módosított</td>
<td>16</td>
</tr>
<tr>
<td>AEP852</td>
<td>Okor-Bükkösdi-víz</td>
<td>Erősen módosított</td>
<td>18</td>
</tr>
</tbody>
</table>
VÍZGYŰJTŐ-GAZDÁLKODÁSI TERV
3-3 Fekete-víz vízgyűjtő

Rendszám	Víztest név	Kategória	Típus
AEP840 | Okorkőz-csatorna és mellékvízfolyásai | Erősen módosított | 18
AEP876 | Pécsi-víz alsó | Erősen módosított | 18
AEP877 | Pécsi-víz és mellékvízfolyásai | Erősen módosított | 9
AEP914 | Régi-Fekete-víz | Erősen módosított | 15
AEQ095 | Vályogvető-árok | Erősen módosított | 15

A területen mesterséges vízfolyás víztest nincs.

Az alegység területén erősen módosított nem, de mesterséges állóvíz víztest 2 db található, melyek mindegyike halastórendszer - 101 és 226 ha kiterjedéssel.

1-12. táblázat: Az alegység területén található mesterséges állóvíz víztestek

<table>
<thead>
<tr>
<th>Azonosító</th>
<th>Víztest név</th>
<th>Kategória</th>
<th>Típus</th>
</tr>
</thead>
<tbody>
<tr>
<td>AIH006</td>
<td>Pellérdi halastavak</td>
<td>Mesterséges</td>
<td>-</td>
</tr>
<tr>
<td>AIH024</td>
<td>Sumonyi halastórendszer</td>
<td>Mesterséges</td>
<td>-</td>
</tr>
</tbody>
</table>

1.4.4 Felszín alatti víztestek

A Víz Keretirányelv a következő felszín alatti vizekkel kapcsolatos fogalmakat vezeti be:

„Felszín alatti víz” jelenti mindazt a vizet, ami a föld felszíne alatt a telített zónában helyezkedik el, és közvetlen kapcsolatban van a földfelszínnél vagy az altalajjal.

„Felszín alatti víztest” a felszín alatti víznek egy víztartón vagy víztartókon belül lehatárolható részét jelenti.

“Víztartó” olyan felszín alatti közetréteget vagy közetrétegeket, illetve más földtani képződményeket jelent, amelyek porozitása és áteresztő képessége lehetővé teszi a felszín alatti víz jelentős áramlását, vagy jelentős mennyiségű felszín alatti víz kitermelését.

Magyarországon valamennyi felszín alatti víz része valamely víztestnek. Felszín alatti vizeinket széleskörűen hasznosítjuk, így az átlagosan 10 m³/nap-nál nagyobb hozammal megcsapolt vízadók az ország teljes területén előfordulnak. A víztestek felső határa a legelső felszín alatti vízfelszín, míg alsó határa a már nem vízet, hanem kölojat tároló közete, vagy az úgynevezett „medence aljzat”.

A felszín alatti víztestek első lehatárolási szempontja a geológia, amelynek eredményeként háromféle vízföldtani főtípus különíthető el:

- Medencebeli, uralkodóan porózus vízadók a törmelékes üledékes közетеikben
- Karszt (csak a főkarsztaba sorolható) a karbonátos közeteikben
- Vízadók a hegvyidek területek vegyes összetételű közeteiben (kivéve a főkarszt).
A **porózus víztestek** Magyarország legnagyobb kiterjedésű, hidraulikailag összefüggő felszín alatti víztest-csoportja. Also határat a paleozoós, mezozoós alaphegység alkotja, bár vastagságának megállapításakor annak esetleg víznyerésre alkalmas felső néhány 10 m-es repedezett zónáját is figyelembe vették. Peremét (a hegyvidéki víztest-csoporttal közös határátt) az alsó- és felső-pannon határ felszíni metszéséhez adja. A porózus víztestek kód jele: „p”.

A **karszt víztestek** Magyarország területén - a porózus után - a második legfontosabb regionális jelentőségű vízadó képződmény, amelyek a mezozoós – elsősorban triász korú – karbonátos, repedezett, karsztosodott összletben fordulnak elő. Ez az ügynevezett főkarszt-víztároló. Velük szoros hidraulikai kapcsolatban álló eocén mészkövekkel együtt, ezek a képződmények alkotják a karszt víztestek csoportját. Állárendelten júra és kréta, valamint paleozoós mészkövek is a „főkarszitba” sorolhatók. A karszt víztestek – amelyeknek részei a lezökkent, mélyben futó karszt nyúlványok is - lehetőségében tükröződnek a hagyományos vízföldtani tájegységek. A karszt víztestek kódjele: „k”.

A **hegyvidéki víztestek** nevükön hűen a hegyvidéki területeken találhatóak. Ehhez a víztest típushoz – a karszt víztestek csoportjába soroltaknál kívül – változatos földtani képződmények tartoznak, amelyek kora a quartértől a mezozoikumon át a paleozoikumig terjed, egyaránt előfordulnak bennük porózus, repedezett és karsztosodott vízadók. A fő-karsztvíztárolóhoz nem sorolt karbonátos képződmények a hegyvidéki víztest részé. A térképen a karszt víztestek felszín kibúvásai a hegyvidéki víztestekben „folytonossági hiányként” jelennek meg. A hegyvidéki víztestek kódjele: „h”.

A porózus és karszt víztestek esetében a második lehatárolási szempont a vízhőmérséklet:

- **Hideg vizek** (kitermelt víz hőmérséklete nem haladja meg a 30 °C-ot)
- **Termálvizek** (kitermelt víz hőmérséklete magasabb, mint 30 °C)

Magyarország sajátos geotermális adottságai következtében az ország jelentős részén tárhatunk fel 30 foknál melegebb vizeket. A hideg és termál víztesteket a 30 °C-os izoterma felület választja el. Ugyan a karszt víztestek esetében is a 30 °C-os izoterma felület választja el a hideg és a termál karszt víztesteket, a hegy ségek tektonikai szerkezetéből adódóan a hideg és a termál karszt víztesteket - az egyszerűbb kezelhetőség érdekében - egymás mellett elhelyezkedőknek tételezték fel. A lehetőlátási módszertan másik egyszerűsítési eredménye, hogy a hegyvidéki víztesteknél nem különítünk el termál víztesteket. A termál víztestek kódjele: a főtípus kódjelet követő „t”.

A porózus víztestek (medencebeli, dombvidéki) és a hegyvidéki víztestek esetében a következő lehatárolási szempont az **érzékenység**:

- **Sekély** (hagyományosan un. „talajvíz”)
- **Nem sekély** (réteg és hasadékos vizek)

A sekély víztest érzékenysége több szempontból is megmutatkozik:

- a sekély vízadók erőteljes meteorológiai hatás alatt álló felszín alatti vizek, amelyek vízjárása különbözik a mélységi vizeikétől;
- a sekély vízadók a felszíni vizekkel közvetlen kapcsolatban állnak (kiemelt szerepük van a felszín alatti víztől függő ökoszisztémánál);
- a sekély vízadók vize – a légkörökapcsolat miatt - természetes vízminősége különbözik a mélyebbben lévőktől (sótartalom, oxigén háztartás, hőmérséklet, ion összetétel);
- a sekély víztestek emberi hatásoknak való kitettségük miatt ténylegesen, illetve potenciálisan szennyezettek (fennáll annak a lehetősége, hogy kémiai állapotuk gyenge).

A sekély víztest teteje a telített és háromfázisú zóna határa, azaz a talajvíz színe. A víztest alja a vízföldtani helyzettől függ:
Ha a felső kb. 50 m-ben van vízzáró, vízrekesztő képződmény, akkor a víztest alsó határa az első vízadóösszetek függetlenül lehet megállapítható (vízföldtani határ).

Ha a felső 50 m-nincs vízzáró, vízrekesztő képződmény, vagy nincs elég ismeret róla, akkor a víztest alsó határa a talajvíz szintje alatt 30 m-rel húzódik.

A sekély víztestek kódjele: a főtípus kódjelet megelőző „s“.

A negyedik lehatárolási szempont a vízgyűjtő: A felszín alatti víztesteket - a Víz Keretirányelv szerint - a felszíni vízgyűjtőkhöz kell rendelni, ezért adminisztratív szempontból egyszerűsíti a helyzetet, ha - ahol lehetséges és értelme van - a felszín alatti víztestek felszínű vízgyűjtők szerint tovább oszódnak. Ennek eredményeképpen a porózus és a hegyvidéki (sekély, réteg és hasadékos) víztestknél a felszínű vízek vízválasztói, míg a karszt víztestknél a nagyobb forrásokhoz köthető felszín alatti vízgyűjtő határ és a termál víztestknél is a felszín alatti vízgyűjtő jelenti a további felosztást.

1-6. ábra: A hegyvidéki és karszt víztestek elvi modellje

Az ötödik lehatárolási szempont – az áramlási rendszer - egyedül a porózus víztestknél alkalmazható, ezáltal a beszivárgási és megcsapolási területek szétválasztása történik meg:

- Leáramlási területek
- Feláramlási területek
- Vegyes áramlási rendszerek dombvidéki és hegylábi területek

A leáramlási és feláramlási területek közötti átmeneti területeket az egyszerűsítés érdekében elhanyagoljuk. További egyszerűsítést jelent, hogy a lokális áramlási rendszerek is figyelmen kívül
hagyottak – még a sekély víztestek esetében is -, annak ellenére, hogy a mennyiségi és kémiai jellemezők mozaikossága ennek a következménye. Feláramlással jellemezhető víztestek kijelölése ott történt, ahol jelentős a párolgás útján történő megcsapolás. A sekély hegyvidéki és dombvidéki területeken a feláramlási területek a völgyekben húzódnak, amelyek olyan keskenyek (kivétel az olyan keskeny völgyek, mint a Hernád, Sajó, és a Marcal), hogy a víztestek 100.000-es méretarányú felbontásban nem kezelhetők, emiatt ezekben a térségekben a porózus vízadók hidrodinamikai típusa: vegyes (beszívárgási és feláramlási is).

1-7. ábra: A porózus víztestek elvi modellje (Tóth József ábrája nyomán)

A területen 2 db sekély dombvidéki porózus, 2 db dombvidéki porózus, 2 db sekély hegyvidéki hasadékos, 2 db hegyvidéki hasadékos, 2 db hegyvidéki karszt 1 db dombvidéki porózus termál és 2 db hegyvidéki termálkarszt víztest található.

1-13. táblázat: Az alegység területén található felszín alatti víztestek

<table>
<thead>
<tr>
<th>Azonosító</th>
<th>Víztest név</th>
<th>Típus kód</th>
<th>Típus leírás</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALQ571</td>
<td>Feketevíz vízgyűjtő</td>
<td>p.3.3.1</td>
<td>dombvidéki-folyóvölgyi porózus</td>
</tr>
<tr>
<td>ALQ570</td>
<td>Feketevíz vízgyűjtő</td>
<td>sp.3.3.1</td>
<td>dombvidéki-folyóvölgyi, sekély, porózus</td>
</tr>
<tr>
<td>ALQ519</td>
<td>Dráva-völgy Barcs alatt</td>
<td>p.3.3.2</td>
<td>dombvidéki-folyóvölgyi porózus</td>
</tr>
<tr>
<td>ALQ518</td>
<td>Dráva-völgy Barcs alatt</td>
<td>sp.3.3.2</td>
<td>dombvidéki-folyóvölgyi, sekély, porózus</td>
</tr>
<tr>
<td>ALQ610</td>
<td>Mecsek</td>
<td>h.1.12</td>
<td>hegyvidéki hasadékos</td>
</tr>
<tr>
<td>ALQ609</td>
<td>Mecsek</td>
<td>sh.1.12</td>
<td>hegyvidéki, sekély, hasadékos</td>
</tr>
<tr>
<td>ALQ658</td>
<td>Villányi hegység</td>
<td>h.3.1</td>
<td>hegyvidéki hasadékos</td>
</tr>
<tr>
<td>ALQ659</td>
<td>Villányi hegység</td>
<td>sh.3.1</td>
<td>hegyvidéki, sekély, hasadékos</td>
</tr>
<tr>
<td>ALQ657</td>
<td>Villányi hegység-karszt</td>
<td>k.3.1</td>
<td>hegyvidéki karszt</td>
</tr>
</tbody>
</table>
A sekély porózus, a sekély hegyvidéki, a karsztos és hasadékos víztestek összességében a vízgyűjtő területet lefedik.

A víztestek térbeli elhelyezkedését az 1-7., 1-8., 1-9. és 1-10. térkép melléklet mutatja be.

Az ivóvízellátás szempontjából a porózus és karsztosodott képződmények a meghatározók, de a karsztos meleg vizek is fontosak az idegenforgalom és termálturizmus szempontjából.

<table>
<thead>
<tr>
<th>Azonosító</th>
<th>Víztest név</th>
<th>Típus kód</th>
<th>Típus leírás</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALQ574</td>
<td>Harkány és környezete, termálkarszt</td>
<td>kt.3.1</td>
<td>dombvidék-folyóvölgyi termálkarszt</td>
</tr>
<tr>
<td>ALQ608</td>
<td>Mecsek-karszt</td>
<td>k.1.8</td>
<td>hegyvidéki karszt</td>
</tr>
<tr>
<td>ALQ611</td>
<td>Mecseki termálkarszt</td>
<td>kt.1.8</td>
<td>hegyvidéki termálkarszt</td>
</tr>
<tr>
<td>ALQ517</td>
<td>Délyugat-Dunántúl</td>
<td>pt.3.1</td>
<td>dombvidéki, porózus, termál</td>
</tr>
</tbody>
</table>

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A porózus víztestek nagysága (1470+807)</td>
<td>2077 km²</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A hasadékos víztestek nagysága (50+500)</td>
<td>550 km²</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A karsztos víztestek nagysága (405+218)</td>
<td>633 km²</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A porózus termálvíztest nagysága (1470+807)</td>
<td>500 km²</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Az egész összesen</td>
<td>3250 km²</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
2 Emberi tevékenységből eredő terhelések és hatások

Az emberi tevékenységből eredő jelentős terhelések számbavételéről a VKI VII. melléklete, míg a terhelések felszín és felszín alatti vizek állapotára gyakorolt hatásainak vizsgálatáról az 5. cikkel rendelkezik. A terhelések azonosításával kapcsolatban a VKI II. melléklete ad iránymutatást. A hazai szabályozásban ugyanezen előírások a vízgyűjtő-gazdálkodás egyes szabályairól szóló 221/2004 (VII. 21.) Korm. rendelet 12. §-ban jelennek meg.

Az emberi tevékenységekből eredő terhelések számbavételének és a hatások elemzésének célja, hogy a vizek állapota szempontjából jelentős vízgazdálkodási kérdések feltárása megtörténjen. A vízgyűjtő-gazdálkodási tervhe foglalt intézkedésekkel a humán terheléssel okozott problémát kell megzűntetni, vagy csökkenteni; a Víz Keretirányelvnek nem célja minden vízügyi probléma megoldása. A VKI, azaz a vizek állapota szempontjából nem számít jelentős vízgazdálkodási problémának például, hogy

- hazánkban a vizek térben és időben egyenlőtlenül oszolnak el, ezért az aszály- és az árvíz veszélyeztetettségünk jelentős, illetve rendszeresek a vízkár események;
- a felszín alatti vizek természetes arzén tartalma a z országban belül jelentős rész a vízgazdálkodási kérdések feltárása megtörténjen.

Számos, a fenti két példához hasonló vízügyi probléma kezelésének módját más irányelvek (árvízi, ivóvíz, nitrát, stb.) határozzák meg, viszont ezek mindegyike alárendelhető a Víz Keretirányelvnek, hiszen a VKI a vízpolitika teljes egészében fogja keretbe.

A vízgyűjtő-gazdálkodási terv 2. fejezetének célja, hogy bemutassa

- a számba vett emberi tevékenységeket,
- a „jelentős” besorolás módszertanát,
- a tevékenységek közvetlen hatását a vizekre, azaz

végeredményben a jelentős vízgazdálkodási kérdéseket.

E fejezet és mellékletei összeállításához szükséges adatgyűjtés során ugyanarra az emberi tevékenységre vonatkozó információ több forrásból is beszerezésre került. A vízgyűjtő-gazdálkodási terv maga az eredeti, egyedi adatokat többnyire nem tartalmazza, hanem az azokból előállított feldolgozott információkat mutatja be. Az egyedi adatok közlését a legtöbb adatgaenda nem engedélyezte. Ezért a terv az adatok forrását minden esetben tartalmazza, valamint azt is, hogy azok milyen feldolgozáson estek át.

2.1 Pontszerű szennyezőforrások

A vizek rossz állapotát okozó szennyezőforrások egy jelentős része ismert, de évről-évre szépen változnak akadnak illegális tevékenységből származó szennyezések is. A pontszerű szennyezőforrások alapvetően települési, ipari és mezőgazdasági eredetűek lehetnek, egy részük havária-eseményekből származik.
2.1.1 Települési szennyezőforrások

Hulladék

A települések legjelentősebb szennyező hatásaként a keletkező települési szilárd hulladékok ártalmatlanítását kell megemlíteni, mely jelenlegi általános gyakorlata a lerakás. A korábban kialakult lerakóhelyek gyakran sérülékeny közegben vannak, hiszen még a legális lerakók kijelölését sem előzte meg vizsgálat. 2002. december végén nagy változás következett be a hulladéklerakók üzemeltetése terén. Sorra bezártak a kis lerakó telepek és a települések egy-egy nagyobb - főként kistérségi – lerakóhoz, illetve azt üzemeltető szolgáltatóhoz csatlakoztak.

A tervezési területen üzemelő legjelentősebb lerakó a pécs-kökényi regionális lerakó, mely megfelelő műszaki védelemmel, környezetvédelmi és működési engedéllyel rendelkezik.

Említtést érdemel még a sellyei, beremendi és szigetvári hulladéklerakó, melyek működési engedéllyel még rendelkeznek, de a régi hulladékgyártótelep szilárd hulladékok bezárását irányozza elő. A korszerű, térségi komplex hulladékkezelő rendszer (regionális hulladékgyűjtési rendszer, hulladékudvarok, átrakóállomások, válogatóművek, hulladéklerakók, komposztálók) kialakítása Pécs, Szigetvár-Szentlőrinc, Bóly-Villány, Síklós-Harkány, Sellye-Vajszló térségében, és a korszerűtlen hulladéklerakók rekultivációja térségi összefoglalással jelenleg folyik a Mecsek-Dráva Hulladékgyártótelep felügyeletében.

Következmények:

Jelentős szennyezőforrások a műszaki védelem nélküli, illetve felhagyott települési szilárd hulladékok és illegális lerakók. Műszaki védelem hiányában az ipari és háztartási hulladékok szennyező anyagai (egyszerű szervetlen ionok (pl. nitrát, klorid), a növényi és biológiai feldolgozás miatt keletkező anyagok) az esővízzel kerülnek el a jövő vízbe, és szennyezik a felszíni és felszín alatti vizeket.

Mértéke: A tervezési alegységen összesen 133 db települési szilárd hulladéklerakó található, ami magában foglalja a működő, bezárt, és illegális hulladéklerakókat is. (Adatforrása: PHARE felmérések, felügyeleti adatbázis).

Teljes lett az illegális lerakók többsége a műszaki védelem hiányában, amelynek következménye, hogy a települések szilárd hulladékok szennyező anyagai a felhagyott típusú lerakókban kerülnek el, illetve a korszerűtlen hulladéklerakók mérete általánosságosan jellemző, és a Honvédség kialakításával a korszerű hulladéklerakók számában növekedett, erre a következmény, hogy a felszín alatti vizek érintésével szereplő hulladéklerakók bezárására, és a felügyeleti feladatokra van szükség.

Szennyvíz

A vízgyűjtőn 8 szennyvíztisztító telep működik, ezek mindegyike felszíni vízfolyásba vezeti a tisztított szennyvízet. A pécsi és szigetvári telep a saját városuk szennyvízéinek kivül a környező települések szennyvízét is fogadja. A harkányi, szentlőrinci, slízéti, beremendi, sellyei és a görcsönyi szennyvíztisztító mű csak egy-egy település ellátását szolgálja. A vízgyűjtőn helyezkedik el még néhány csatornázott település, (Kálma, Istvándi, Darány, Kastélyosdombó, Drávagárdony és Drávatamási) amelyek a Barcsi szennyvíztelep és a szennyvíz településeken a csatornázott településeken a szennyvíz csatornázattól még rá nem között ingatlanokon keletkező szennyvíz gyűjtése jellemzően zárt tárolókban történik.

Következmények: A több település szennyvízeit fogadó szennyvíztisztító telepekkel elfogyó tisztított szennyvízek koncentráltan kerülnek a befogadó felszíni vízfedőkben, amelyeket az emberi tevékenységből eredő terhelések és hatások – 29 –
Mértéke: A szennyvíztisztító telepekről elfolyó tisztított szennyvizek a vízgyűjtő vízfolyásaiiba kerülnek elvezetésre. Ezek közül a pécsi szennyvíztelep elfolyó vizeit befogadó Pécsi-víz terhelése a legnagyobb. A szennyvízelvezető rendszerek és a szennyvíztisztító telepek szakszerű üzemeltetés mellett a havária eseteket kivéve nem jelentenek jelentős mértékű terhelést.

2.1.2 Ipari szennyezőforrások, szennyezett területek
A kockázatos emberi tevékenységekből adódóan (bányászat, nehézipar, feldolgozóipar, élelmiszeripar, stb.) leginkább az ipari technológiából történő közvetlen kibocsátások (a hét legjelentősebb: a MECSEK-ÖKO Zrt., a Beremendi Cementgyár, a Pannon Höerömű (Pécs), a Pécsi Börgyár, a Pécs-Reménypusztai major, a Zsolnay Porcelánmanufaktúra és az eFeF Kft. (egykori baromffeldolgozó üzem), technológiai hibák, helytelenül tárolt, raktározott vegyi anyagok környezetbe kerülése, föld alatti tartályok kilyukadása jelentenek veszélyt.

Következmények: A FAVI nyilvántartás szerint a területen 425 db potenciális veszélyforrást jelentő, veszélyes anyag gyűjtőtároló létesítmény található. Következményei szempontjából a legjelentősebb a Budapesti Végyművek garéi tárolója, ahol 1980-tól mintegy 18.000 tonna tetkől-benzollal szennyezett hulladéket helyeztek el – szakszerűenlől. A veszélyes hulladék a levegőbe, a talajba és a talajvízbe került, a tároló körzetében a talaj és a talajvíz elszennyeződött.

Mértéke: Jelenleg a tervezési alegységen összesen 38 helyszínen folyik környezeti kármentesítés. Három esetben a felszíni vizek mederanyaga uránnal illetve nehézfémekkel, öt esetben a talaj nehézfémekkel szennyeződött. A többi esetben a talaj és a talajvíz is elszennyeződött, jellemező szennyezőanyagok a szénhidrogének, Garéban a klórben, illetve az uránbányászati tevékenységből adódóan az urán-, rádium - és nehézfém szennyezők.

Mindegyik helyszínen megkezdődött a kármentesítés, jelenleg a következő szakszakban: 2 helyszínen ténylettárazás, 19 helyszínén műszaki beavatkozás és 17 helyszínén kármentesítési monitoring szakaszban.

Garéban a kármentesitsre kötelezett Budapesti Végyművek megszűnése miatt a kármentesítés 2007. szeptembere óta szünetel, folytatását mielőbb meg kell oldani. Tartós környezeti károsodást négy esetben jegyezték be.

Az tervezési alegység területén az elmúlt időszakban jelentős mélyművelésű bányászati tevékenység folyt a Mecsek nyugati és középső részén. A felszín alatti tevékenység gyakorlatilag a szén-és uránbányászat esetében is megszűnt, jelenleg rekultivációs és tájrendezési tevékenység folyik. Az egykori uránbánya és az ércdúsító térségében a bányavizek és a talajvíz kémiai tisztítását végzik.

További bányászati tevékenységet a területen a Villányi hegységnél az 1940.-50. közötti időszakban folyt mélyművelésű bauxitbányászat jelentett, valamint a nagyharsányi és beremendi kőbányák, illetve a Dráva egykori homokos árterületén működő homokbányák jelentek.

Következmények és azok mértéke: A pécsi szénbányákban a víztelenítő rendszer leállt, jelenleg a bányatérségek feltelésének folyamatát regisztrálják. A teljes feltelés esetén a víz felszín megjelenése valószínűsíthető. A víz a szén pirittartalma miatt vassal és szulfátal szennyeződik, ennek megjelenése a későbbiekben várható a Meszesi- és Pécsszabolcsi-vízfolyásokban. A
bányaterületek és meddőhányóik környezetében a felszín alatti vizek szennyeződésének ellenőrzésére monitoring-rendszer űzemel.

Az uránbányászattal érintett területek környezetében a felszín alatti vizek szennyezése és robbantási hajnalának körüli környezetében a felszín alatti vizek szennyezésének ellenőrzésére monitoring-rendszer üzemel.

Az uránbányászattal érintett területek környezetében a felszín alatti vizek szennyezése és robbantási hajnalának körüli környezetében a felszín alatti vizek szennyezésének ellenőrzésére monitoring-rendszer üzemel.

Az uránbányászattal érintett területek környezetében a felszín alatti vizek szennyezése és robbantási hajnalának körüli környezetében a felszín alatti vizek szennyezésének ellenőrzésére monitoring-rendszer üzemel.

A Villányi-hegység területén vágatokkal harántolt kőzethasadékokon lejutó szennyezés a karsztvízre jelentett potenciális veszélyt, azonban ennek hatása a környéken végzett ivóvízbázis-védelmi vizsgálatok során nem volt kimutatható.

Nitráttartalom-növekedést figyeltek meg a nagyharsányi és beremendi bányák környezetében a karsztvíz vizsgálata során. Ez a robbantási munkák során keletkezett nitratok bemosódásával magyarázható.

A Dráva árterületén működő homokbányák közül a működők a termelési és szállítási munkák során esetlegesen fellépő olajszennyezést miatt jelentenek elhanyagolható mértékű veszélyforrást, de a felhagyott bányákban működő, kommunális hulladéklaktárok Harkány térségében reális veszélyforrásnak kell minősíteni a felszíni és felszín alatti vizekre egyaránt.

2.1.3 Mezőgazdasági szennyezőforrások

A vizsgált területi alegység mezőgazdasága kifejezetten fejlett. A jó minőségű szántóterületeken intenzív kenyérgabona, kukorica és egyéb takarmányok termesztése folyik. Ide tartozik a szekszárdi borvidék is, amihez jelentős szőlőtermelés és borászat tartozik. A térség állattenyésztése is jelentős, főleg a szarvasmarha és sertéstenyésztés.

A gazdaságok szétesésével az állattartó telepeken a technikai megoldások elavultak, hiányzik a gépi kapacitás, tárolókapacitásuk sem kielégítő. Sok helyen megszűntek a trágyatelepek, a trágyahalmok és ún. trágyaszarvasok elhelyezése nem szakszerű. Az itt felsorolt változások eredménye, hogy a trágya jelenleg komoly környezetszennyező tényezővé vált.

A mezőgazdasági eredetű vízszennyezés mérséklése érdekében az állattartással összefüggő megfelelő trágyakezelés- és elhelyezés, a jó mezőgazdasági gyakorlat alkalmazása szükséges. Ez a nitrátérzékeny területeken kötelező. Az almos trágya tárolásához az állattartó telepen a technikai megoldások elavultak, hiányzik a gépi kapacitás, tárolókapacitásuk sem kielégítő. Sok helyen megszűntek a trágyatelepek, a trágyahalmok és ún. trágyaszarvasok elhelyezése nem szakszerű. Az itt felsorolt változások eredménye, hogy a trágya jelenleg komoly környezetszennyező tényezővé vált.

A mezőgazdasági eredetű vízszennyezés mérséklése érdekében az állattartással összefüggő megfelelő trágyakezelés- és elhelyezés, a jó mezőgazdasági gyakorlat alkalmazása szükséges. Ez a nitrátérzékeny területeken kötelező. Az almos trágya tárolásához az állattartó telepen műszaki védelemmel ellátott (szigetelt, csurgaléggel ellátott), megfelelő kapacitású trágyatér szükséges. A hígtrágya tárolására szükséges, hogy a trágya jelenleg komoly környezetszennyező tényezővé vált.

A mezőgazdasági eredetű vízszennyezés mérséklése érdekében az állattartással összefüggő megfelelő trágyakezelés- és elhelyezés, a jó mezőgazdasági gyakorlat alkalmazása szükséges. Ez a nitrátérzékeny területeken kötelező. Az almos trágya tárolásához az állattartó telepen műszaki védelemmel ellátott (szigetelt, csurgaléggel ellátott), megfelelő kapacitású trágyatér szükséges. A hígtrágya tárolására szükséges, hogy a trágya jelenleg komoly környezetszennyező tényezővé vált.

Következmények: A mezőgazdasági tevékenység során pontszerű szennyezőforrások az állattartással összefüggésben (trágyatárolás-elhelyezés) keletkeznek. A szennyezés a területi és talajadottságoktól függenő a felszíni és a felszín alatti vizeket egyaránt érintheti.

Mértéke: A korábbi évtizedekhez képest – gyakran a termelés visszaesése miatt – jelentősen lecsökkent a mezőgazdaság szennyezőhatása. A tervezési területen működő számos állattartó telep közül környezetvédelmi környezetvédelmi engedély mellett a termelkedés engedélye mellett csak egy részük rendelkezik, a nem megfelelő műszaki kialakítású, szigetelés nélküli trágyasorozatok a térségében maradhatnak. Az elmúlt években megkezdődött az állattartó telepek környezetvédelmi felülvizsgálata és a trágyatároló létesítmények korszerűsítése. A környezetvédelmi felülvizsgálatok eredményei néhány esetben a talajvíz ammónium- és nitrát szennyezését mutatták, melynek oka a helytelen trágyakezelési technológia, vagy a műtárgyak (hígtrágya tárolók) nem megfelelő műszaki állapota volt. Az esetek többségében kármentesítés

Következmények: A mezőgazdasági tevékenység során pontszerű szennyezőforrások az állattartással összefüggésben (trágyatárolás-elhelyezés) keletkeznek. A szennyezés a területi és talajadottságoktól függenő a felszíni és a felszín alatti vizeket egyaránt érintheti.
VÍZGYŰJTŐ-GAZDÁLKODÁSI TERV
3-3 Fekete-víz vízgyűjtő

nem volt indokolt, a talaj és talajvíz szennyezés a múltágyak megfelelő kialakításával, korszerűbb technológiák alkalmazásával, illetve és a jó mezőgazdasági gyakorlat betartásával kizárható.

2.1.4 Balesetszerű szennyezések

Balesetszerű szennyezések bárhol előfordulnak, ezért a potenciális szennyezőanyagok gyártásánál, raktározásánál (tárolásánál) és szállításánál nagy körültekintéssel kell eljárni és a havária-helyzetek kezelésére stratégiával (tervvel) kell rendelkezni.

Az elmúlt 5 év szennyezéseit megvizsgálva nyolc jelentősebb eset említhető. Négy esetben trágya okozott szennyezést vízfolyásokban, egy esetben szennyvíz került élővízbe, három esetben olaj volt a szennyezőanyag, ebből egy alkalommal a Drávát érte a szennyezés.

2.2 Diffúz szennyezőforrások

A diffúz szennyezések alapvetően a területhasználatokkal függenek össze, ezért a legnagyobb szennyezés veszélyét a települések és a mezőgazdasági termelés rejtik magukban.

2.2.1 Települések

Hulladék

A települési szilárd hulladékok a szakszerűen elhelyezés következtében általában pontoszerű szennyezőforrásként jelennek meg a települések környezetében, de a burkolatlan felületeken felhalmozódó szennyezések diffúz szennyezésként is megjelenhetnek, szennyezve az élő vizeket és a talajvizet.

A tervezési alegységen üzemelő dögkút nem található, a felhagyott dögkutak száma 11, ezek rekultiválása szükséges.

Szennyvíz

A vízgyűjtőn 8 szennyvízisztító telep üzemel. A csatornázatlan településeken és a csatornázott településeken a szennyvízisatornára még rá nem kötött ingatlanokon keletkező szennyvíz gyűjtése jellemzően zárt tárolókban történik.

Következmények: A csatornázatlan területeken a nem szakszerűen kialakított gyűjtő-tárolókból, szikkasztókból kikerülő szennyvíz a talajvizet terheli.

Mértéke: Pontos adatok nem állnak rendelkezésre, de a szennyezés tényleg vélhetően mindenütt megállapítható.

Szennyezett csapadékvíz

A vízkárelhárítási célokat szolgáló belterületi csapadékvíz-elvezető rendszerek tervezése, kivitelezése esetében az alapvető törekvés az, hogy a káros mennyiségű (többlet) csapadékvizeket minnél hamarabb befogadóba vezessék. Így ugyanakkor azzal is jár, hogy az
elvezetett vízzel együtt a belterületek szennyezéséi is a befogadóba (gyakran élő vízfolyásba) kerülnek.

2.2.2 Mezőgazdasági tevékenység

A mezőgazdasági eredetű diffúz vízszennyezések döntő többségéért a nem megfelelő szerves- és műtrágya használat a felelős. Mérsékeltévékében a trágyák körültekintő használat, illetve a jó mezőgazdasági gyakorlat alkalmazása szükséges. Ez a nitrátérzékeny területeken kötelező. A felszíni szennyezésre fokozottan érzékeny területeken korlátozott a vegyszer- és műtrágya használat.

Következmények: A fenti leírt mezőgazdasági tevékenység a vízfolyások egész hosszán diffúz szennyező forrásként értékelhető. A műtrágyák és szerves tápanyagpótlók (komposzt, szennyvíz, szennývíziszap) trágyák (hígtrágya, almos trágya) felhasználása következtében toxikus fémek és mikroszennyezők is kerülnek a talajba és onnan bemosódnak a talajvízbe, szennyezve azt.

Mértéke: A korábbi évtizedekhez képest – gyakran a termelés visszaesése miatt – jelentősen lecsökkent a mezőgazdaság szennyező hatása, de mértéke így is jelentős.

2.3 Természetes állapotot befolyásoló hidromorfológiai beavatkozások

2.3.1 Duzzasztások (keresztirányú műtárgyak)

A tervezési alegységen több völgyzárógát halastó és tározó található, melyek közül a Merenyei, a Somogypáti, a Csertő és a Pécsi tavak a legjelentősebbek. A Pécsi tó kivételével a többi jelentős nagyszámú tó halászati-horgászati hasznosítású. A patakok völgyének elzárása alapjaiban változtatja meg a vízfolyás jellegét, hiszen kihat a vízjárásra, a hordalék-viszonyokra és gátolja a vízi élőlények mozgását. Az alegység vízfolyásain több duzzasztómű és fenékküszöb is található.

A tervezési alegység vízfolyás víztestei közül (32) völgyzárógátakkal érintett 6, duzzasztómmal érintett 5, és 4 víztest esetében van fenékküszöb.

2.3.2 Folyószabályozás, árvízvédelemi töltések

Folyószabályozás

A Dráva szabályozása a többi hazai folyóval egy időben kezdődött el. Az első írásos feljegyzések a XVIII. század végétől említettek beavatkozásokat lokális jelleggel, pl. két nagyobb átmetés létesült ebben az időben. Az egységes vízszabályozás a XIX. században beinduló térképesztési munkák után indulhatott meg. A folyót a Murával közösen 1835-1846 között mérték fel. A mederfelmérések után alkalmazták a szabályozási terveket a fővágó Légrád-Almás közötti 454 km hosszú szakaszában. A kanyarátvágás a legnagyobb volt Bieloborodnál, ahol a vízjárásra, a hordalék-viszonyokra és gátolja a vízi élőlények mozgását. Az alegység vízfolyásain több duzzasztómű és fenékküszöb is található.

A munkálatok kezdetben kisebb szakaszokra koncentrálódtak, majd a folyó 0-238 km közötti szakaszára 1975-ben fogadta el a két ország küldöttsége az általános szabályozási tervet. A tervben meghatározta a folyó főbb szabályozási paramétereit, pl.
VÍZGYŰJTŐ-GAZDÁLKODÁSI TERV
3-3 Fekete-víz vízgyűjtő

szabályozási szélességet (Barcs alatt 170 m), vízszint magasságát (0” víz + 1,5 m), a művek méréttét, anyagát, stb.. A szabályozás alapelvére, hogy a bal parton határtól függetlenül a magyar, a jobb parton a horvát fél végezte, végi általában a munkákat. A szabályozások több cél is szolgáltak, egyrészt a partok védelmét, az árvizek, a jég jobb levonulását segítették elő, másrészt a hajózható szakaszon a hajóút minőségét javították.

A folyón alulról haladva az alábbi jelentősebb beavatkozások történtek 1955 után:

- 0-65 fkm közötti szakasz
 - A torkolati szakasz rendezték, jelentős partvédő művek épültek Eszéken, szabályozták a 42-44 fkm közötti mederrészt, kanyarátvágás volt a 48-49 fkm között, szabályozásra került még az 53-54 fkm és a határ alatti terület.
- 65-75 fkm közötti szakasz
 - A fenti szakaszon a szabályozási munkák 1968-ra befejeződtek.
- 75-85 fkm közötti szakasz
 - A munka 1968-78 között zajlott, a kiegészítő művek 1983-re készültek el.
- 85-95 fkm közötti szakasz
 - A munka 1973-ban indult be, és 1983-ban fejeződött be.
- 95-130 fkm közötti szakasz
 - A munka 1973-ban indult be, és 1983-ban fejeződött be.
- 140-150 fkm közötti szakasz
 - A munkák 1980-ban indultak be, és a kilencvenes évek elején fejeződtek be.

A kilencvenes évek elején a Duna-Dráva Nemzeti Park megalakulásával a klasszikus folyószabályozási munkák a Dráva folyó közös szakaszán magyar részről jelentősen lecsökkentek. A Dráva folyó 70,2 - 145 fkm közötti szakaszán ebben az időszakban magyar oldalon 83, míg horvát oldalon 63 szabályozási mű épült. Mindebből látható, hogy a Dráva ezen (alsó) szakasza erősen szabályozottnak tekinthető. A folyó szabályozásával sok mellékág kapcsolata megszűnt a medrerrel, vízellátásuk nem kielégítő. A korábbi szabályozási munkák és részben természetes folyamatok következtében a folyó medrét sok helyen holtágak kisérik.

A folyó felső szakaszán vízierőművek üzemelnek, amelyek a természetes vízjárást és hordalékomzást egyaránt megváltoztatták.

Árvízvédelem

VÍZGYŰJTŐ-GAZDÁLKODÁSI TERV
3-3 Fekete-víz vízgyűjtő

lokalizációs töltéseket. A balparti szakaszon Majlátpuszta-Drávasztára között szakadtak át több helyen is a töltések. A következő védekezést igénylő vízállás 1975-ben volt.

Az árvízi pusztítás hatására fokozott erővel kezdődött meg a magyar területen a töltések helyreállítása, korszerűsítése.

- 1973-1977 között a magyar oldalon az országhatártól mintegy 10 km hosszban készült el a töltés helyreállítása. Megkezdődött a Drávakeresztúr-Revfalú közötti szakaszon is a rekonstrukció.
- 1983-ban megkezdődött a Kelemenliget-Drávasztára közötti új nyomvonalon haladó töltés építése, ami az évtized második felében fejeződött be.

A hullámtéri területek, így bizonyos mértékben módszertanyagot képeztek. A hetvenes-nyolcvanas évek további erőmű építési elképzelései miatt (további 4 erőmű létesült volna Durdevac, Barcs, Moslavina, Osijek) a töltések magassági kialakítása az erőművek tározóterének árvízcsúcs csökkentésével lett meghatározva. Mivel a koncepciót a kilencvenes évek elején a magyar kormány elvetette, jelenleg is aktuális a magasság megmunkálása a térségben. Jelenleg a két árvízvédelmi szakaszon (Drávaszabolcs-Drávasztára) a töltés hossza összesen 87,4 km, amiből a kimondottan drávai töltés 74,2 km. A védművekkel védett terület nagysága 336,7 km². Az árvízi öblözetben 16 kisebb-nagyobb település található.

2.3.3 Vízjárást módosító beavatkozások, vízkormányzás

A vízjárás változása szempontjából a Dráva esetében a vízérőművek, míg a vízgyűjtő-terület vízfolyásai esetében a völggyárógátas tavad fejtek ki a legnagyobb hatást.

2.3.4 Meder és partrendezés, hajózóútbiztosítás

A vízgazdálkodás története egyidős az emberiség történetével. A vízjárta területek emberi beavatkozás nélkül használhatatlanok voltak. Az ősi állapotokról és a kezdeti vízimunkákról a római időkből állnak rendelkezésre az első források. Középkori feljegyzések szóinak halászati célú bevezető, illetve leeresztő csatornáról, zsilipekről, várárkokról, védőgátakról, de a legjelentősebb beavatkozások a hatásuk alapján hírhedték vált malomgát-építések voltak. A kisebb esésű völgyek elzárásával ugyanis megindult azok elmocsarasodása, mely folyamat a török hódoltság idején még nagyobb területekre terjedt ki.

A XVIII. században az iparosodás, a kereskedelem fejlődése, a népsűrűség növekedése az elvadult területek újrahasznosítását igényelte, melynek feltételeit elsősorban árvízmentesítő, lecsapoló vízimunkákkal kellett biztosítani. Újra kezdődött a Dráva menti folyamatos árvízvédelmi gát kiépítése, a vízfolyások átfogó rendezése.

Az 1800-as években került sor a térség legjelentősebb befogadóinak (a Fekete-víznek és a Pécsi-víznek) a rendezésére, a Korcsina-csatorna kiépítésére. A vízimunkák végzésére vízitársulatokat alapították, melyek az 1948-as államosításokig működtek. A vízgazdálkodási feladatok ellátása az ötvenes években következett be, a kiépített medrek fenntartását, fejlesztéséért elfajult, a vízművek tönkrementek.

Céljainak indulására a vízügyi igazgatóságok létrehozása, illetve a vízitársulatok újrakeletkezése után kerülhett sor. A befogadók rendezéséhez a 80-as évekig üzemű területi vízrendezések, meliorációk kapcsolódtak.

A Fekete-víz vízrendszerén kizárólagos átvizsgálásai a Fekete-víznek és a Pécsi-víznek a rendezésére, a Korcsina-csatorna kiépítésére. A vízimunkák végzésére vízitársulatokat alapították, melyek az 1948-as államosítássorozatok működtek.

A vízgazdálkodási feladatok ellátása az ötvenes években következett be, a kiépített medrek fenntartását, fejlesztéséért elfajult, a vízművek tönkrementek.
tésenfai 83,3 fkm szelvényébe került a drávaszabolcs 76,5 fkm szelvényből. Az alsó, leválasztott meder azóta Régi-Fekete-víz névvel kisebb vízgyűjtőről fogadja be a vizeket.

A hetvenes évektől a kézi munkavégzés kiszorulása következtében azonban azokat a szakaszokat, melyeken a gépi fenntarthatóság feltételeit nem biztosították a növényzet ismét benőtte. A fenntartatlan medrek vízszállító képessége a tervezett kiépítési mértéket már nem érte el, ezért a 80-as években elindult a vízfolyások rekonstrukciója. Az újabb mederrendezések során a gépi fenntarthatóság szempontjai váltak elsődlegessé, a 90-es évektől komplex ökológiai szempontok is érvényesülnek.

Mára a térségben a KÖVIZIG kezelésű medrek közül a Pécsi-víz, a Bükkösdi-víz és a Gyöngyös Főág egy-egy szakasza kivételével a vízfolyások fenntartó gépekkel kaszálhatók.

Következmények: A vízrendezési célú beavatkozásokat mindig is a felmerült igények határozták meg. Ezért a gátépítések az árvízvédekezési célokat, a mederrendezések a vízlevezetést, a szivattyútelepek a talajvízszint süllyesztést szolgálják elsősorban. Csak az utóbbi évtized szemléletváltozása biztosítja, hogy a beavatkozások sokrétűen elégségesek ki az összes megfogalmazott igényt. Mivel a tervezett beavatkozásoknak a szűköző fedezet miatt mindig csak egy része valósult meg, nem lehet általános érvényű jellemzést adni, csak kisebbszintű vízgyűjtő területekről.

Napjaink problémái közül említést érdemel, hogy az állami tulajdonban lévő vízilétesítők fenntartására az állami költségvetés egyre kevesebb fedezetet biztosít, illetve hogy a hajdani nagyüzemi területi vízrendezések során kipüült árkok sok esetben gazdátlanok, vagy az önkormányzati tulajdonba kerültek forráshiány miatt gondozatlanok.

Mértéke: Tekintettel az árvízvédelmi művek szabta lefolyási korlátokra, és arra, hogy a befogadó vízfolyások csaknem mindegyike a beavatkozások során legalább egyszer már lett rendezve természetes vízállapotból egyáltalán nem lehet beszélni. A felmérések szerint az alegység víztesti döntő többségénél (32-ből 31-nél) rendezett mederforma található. Mivel azonban az utóbbi évek rekonstrukciói és az ezután tervezett vízimunkák is a komplex szemlélet jegyében igyeksznek a sokoldalú igényeket kielégíteni, másrészt a rendezett, de fenntartatlan medrek „visszavadulnak”, így a befogadók egy kis része természeteshez közeli állapotúnak tekinthető.

2.4 Vízkivételek

2.4.1 Vízkivételek felszíni vizekből

Vízhasznosítás szempontjából a tógazdaságok túlsúlya jellemző, mely tavak, tórendszer völgyzárógátas vagy hossz-töltéses kialakításúak, több esetben pedig „tőlőzér”-ként jelennek meg az adott vízfolyásokon. A tavak többségén intenzív halgazdálkodás folyik, melyek üzemeltetése maga után vonja a folyamatos vízpótlást és az időnkénti fenékvíz leeresztést. A halgazdasági vízfelhasználás mellett az öntözésre igénybe vett vízmennyiség elenyésző. Komoly ökológiai problémák jelentkeznek a drávai mellékágak és holtágak esetében is, ahol az eutrofizációs folyamatok komoly mértéket öltöttek napjainkra.

2.4.2 Vízkivételek felszín alatti vizekből
A vízkivételeket és az utánpótlódási viszonyokat figyelembe véve az alegységen belül:
- A porózus és sekély-porózus víztestek jelentős és hasznosítható vízkészlet tartalékot rendelkeznek.
- Hasznosítható tartalék a karsztban és a termálvíztestekben is van, azonban a kiépített termelő kapacitások jelentős része kihasználatlan, és felújításra szorulnak.

2.5 Egyéb terhelések

2.5.1 Közlekedés
Víziközlekedés
Jelenleg a Dráva a hajózható vízi utak minősítése alapján az EGB. II. kategóriájú vízi útnak felel meg. A folyó, e hajóút paramétereit tudja teljesíteni a 0-198 fkm (Vízvár alatti) szakasznál, 400-600 t uszágok 130-150 napon keresztül tudnak közlekedni a folyón. A folyó vízvár felett gyakorlatilag nem hajózható. A forgalom továbbra is jelentéktelen. A hajók kivételével, homokot, fát szállítanak alkalmassággal. A folyón a kisvízi közlekedés még kisebb. Rendszeresen a DDVÍZIG kitűző hajója, illetve egy sétahajó közlekedik rajta. A magyar kivízi közlekedés még 1991-től a vízitourizmus is megjelent a folyón. A mai napokra már jelentős létszámmal (30 fő) közlekednek a csoportok. Összességében azonban a hajózás, annak feltételeinek a biztosítása nincs érdemben hatással a folyó medrére, morfológiájára. Mivel a partokat ővező infrastruktúra nagyon fejletlen, nincsenek alkalmas kikötők, a Drávához vezető utak, és magyar szállítási irányokba nem illik bele a folyó fekvése, csak nagy kerülővel lehet az ország közepé felé eljutni a vízen, csak a régiós forgalom képzelhető el.

A Dráva bal part 153 + 500 fkm
Üzemeltető: Barcs Város Önkormányzata

A Dráva bal part 155,2 fkm, folyami medencés kikötő (téli kikötő)
Üzemeltető: Dél-dunántúli Vízügyi Igazgatóság, Pécs

Drávaszabolcs: Dráva bal part 78 fkm
Üzemeltető: Dél-dunántúli Vízügyi Igazgatóság, Pécs, Határőrség
Szárazföldi közlekedés

A közúti közlekedés igen jelentős szennyező forrás, a légkörbe kibocsátott lebegő részecskék több mint 40%-áért felel. Városi környezetben ez a légszennyezés fő forrása. Mérgező gázokat, kormot, szénhidrogéneket, szén-oxidokat (CO, CO2) és nitrogén-oxidokat (NO, NO2) juttat a levegőbe. Ezzel szemben a vasúti közlekedés kevésbé környezetszennyező, a kibocsátott COX és NOX mennyisége jelentősen kevesebb. A gáz halmazállapotú anyagok az élővilágra közvetlenül, a talajra, a vizekre és az épített környezetre közvetetten hatnak.

A tervbe vett M6-os és M60-as autó utak megépülésével a térség esélyt kap a jelentősebb ipari, illetve feldolgozóipari fejlesztésekhez. Jelenleg nem láthatók olyan kibontakozási pontok, melyek alapján belátható időn belül számottevő fejlődéssel számolni lehetne. A területen a Véménd-Bóly (~24 km) és Bóly-Pécs (30,2 km) közötti szakaszok megépítése folyamatban van. Jelentősebb vasúti mellékvonal a Pécs-Mohács (60 km) közötti szakasz, illetve a jövőben megnöhet a Pécs-Magyarbóly-Illocska vonal jelentősége, Eszék és Szarajevó irányába töltve be fontos szerepet. Mohácsön kompátelő biztosítja a Duna bal partjára való átjutást, de hidat is terveznek. A beruházás, ha az Országgyűlés elfogadja az új területrendezési törvényt, 2014-ben kezdődne. A fejlesztésnek a közelben épülő M6-os autópályával együtt komoly gazdaságélénkítő hatása lehet.

2.5.2 Rekreáció

A vizitúrizmus a Dráva mellett, valamint a nemzeti park más területein jellemző. Ehhez kapcsolódóan igen nagy jelentőségű a horgászat, ami döntően nem a természetes vizeken (Dráva, vízfolyások), hanem a mesterséges tavakon folyik. A Dráván kijelölt szabadstrand Barcs határában található.

A tervezési alegységen belül a természetes-vizi halászat elhanyagolható. A halászati termelés zöme mesterséges tavakon történik.

2.5.3 Halászat

A tervezési alegységen belül a természetes-vizi halászat elhanyagolható. A halászati termelés zöme mesterséges tavakon történik.
3 Védelem alatt álló területek

A Víz Keretirányelv kiemelt figyelmet fordít a felszíni és felszín alatti vizek mellett a védett területekre is. A VKI szempontjából védettnek számít minden olyan terület, illetve felszín alatti tér, melyet a felszíni és/vagy a felszín alatti vizek védelme érdekében, vagy közvetlenül a víztől függő élőhelyek és fajok megőrzése céljából valamely jogszabály erre kijelölől. Ezek közé tartoznak: az ivóvízkivételek védőidomai, illetve védőterületei, a tápanyag- és nitrát-érzékeny területek, a természetes fürdőhelyek, a természeti értékei miatt védett területek és a halak életfeltételeinek biztosítására kijelölt felszíni vizek. Ebben a fejezetben a védett területek kijelölésével, nyilvántartásával kapcsolatos információkat foglaljuk össze, az állapotértékelésével az 5.4 fejezet foglalkozik. A védett területek elhelyezkedését a 3-1. – 3-5. térkép mellékletek mutatják be.

3.1 Ivóvízkivételek védőterületei

3.1.1 Felszíni ivóvízbázisok

Az alegység területén nem található felszíni ivóvízkivétel.

3.1.2 Felszín alatti ivóvízbázisok

Magyarországon az ivóvízellátás döntően felszín alatti vízbázisokra épül. Így van ez a Fekete-víz alegység területén is: az ivóvízkivétel túlnyomórészt karszt, talaj- és rétegvízadókból történik. A talaj és karsztos ivóvízbázisok sérülékenyek, de előfordulnak sérülékeny ivóvízbázisok a rétegvizes porózus víztesteken is. A sérülékenység oka jelenleg a fedőrétegek hiánya.

A 123/1997. (VII.18.) Korm. rendelet határozta meg a biztonságban helyezés folyamatát. A rendelet 50 főnél több személyt ellátó közcélú üzemelő kijelöli, a rétegvizes porózus víztesteket és a tagországok hatáskörébe utalja, hogy a védettséget a teljes víztestre vagy csak a kijelölt védőzónákra érvényesítsék. Magyarország az utóbbi megközelítést alkalmazza.

Jogilag is alátámasztott védelem szempontjából az 50 éves elérési idő a mérvadó, ezen belül viszont a különböző védőzónákat kell kijelölni, amelyeknek eltérő a védelmi funkciója. A kijelölés elérési időkon alapul: belső védőidom (közvetlen környezet védelme) - 20 nap, külső védőidom (lebomló szennyezésekkel szemben) – 6 hónap, hidrogeológiai A, B védőidomok (különböző veszélyességű nem lebomló szennyezésekkel szemben) – 5 év, 50 év.
A belső védőterületek, hogy a termelőkutak körül szigorú védelem mindig biztosított legyen, állami illetve önkormányzati tulajdonban vannak. A többi védőterületen az ingatlan tulajdonosának kötelessége, hogy a védőterületi határozatban foglaltakat betartsa, és tevékenységét a vízbázis védelem szempontjait figyelembe véve végezze.

Az alegységen található 3 ásvány- és gyógyvízbázis és egyéb vízbázis közül eddig 1-nek a védőidomát/védőterületét jelölték ki.

A védőtövezetek kijelölése elfogadott matematikai modellek alkalmazásával történt. A diagnosztikai vizsgálat során jellemző volt a kivitelezőnek a beruházó KÖVIZIG műszaki ellenőrzével fenntartott napi, szakmai kérdésekre is kiterjedő kapcsolata.

A védőterületek véglegesítése, kijelölése a földhivatali telekhatárokhoz igazodva történt, de több esetben - erdő, nagyobb kiterjedésű szántó, rét esetében - a terület megosztását írták el.

3.2 Tápanyag- és nitrát-érzékeny területek

hogy a területi kijelölés helyett a 91/271/EGK irányelv alá tartozó összes településen a csatornahálózaton összegyűjtött szennyvíz tápanyag tartalmának 75%-os csökkentésével teljesítse a Fekete-tenger védelmét szolgáló kivánalmat. Ezt a lehetőséget Magyarország hivatalosan elfogadta. A 75%-os tápanyag terhelés csökkentési program elfogadása mellett a terület kijelölés módosítása nem szükséges.

- a Balaton, a Velencei-tó, és a Fertő-tó vízgyűjtő területe;
- az ivóvíz-ellátási célt szolgáló tározók vízgyűjtő területei;
- karsztos területek, ahol a felszínen vagy 10 m-en belül a felszín alatt mészkő, dolomit, mész- és dolomitmárga képződmények találhatók;
- az üzemelő és távlati ivóvízbázis, ásvány- és gyógyvízhasznosítást szolgáló vízkivétel külön jogszabály szerint kijelölt vagy lehatárolt védőterületei;
- valamint az előbbiekbe nem tartozó karsztos területek, ahol a felszín alatt 100 m-en belül mészkő, dolomit, mész- és dolomitmárga képződmények találhatók, kivéve, ha lokális vizsgálat azt bizonyítja, hogy nitrogéntartalmú anyag a felszínről 10 év alatt sem érheti el a nevezett képződményeket;
- továbbá olyan területek, ahol a fő porózus-vízadó összlet teteje a felszínről 50 m-nél kisebb mélységben van.

A 27/2006 (II. 7) Korm. rendelet további nitrát-érzékeny területeket (települések belterülete, bányatavak 300 méteres környezete és állattartó telepek) ír elő, amelyek MEPAR szinten még nem lettek kijelölve, de adataik szerepelnek a VGT Adatbázisban. Ezeket a területeket, valamint az üzemelő és távlati vízbázisok újaban kijelölt felszíni védőterületeit a térképen piros színnel ábrázoltuk. Az állattartó telepek piros pontokként szerepelnek. Ez a térkép tartalmazza a jogszabályokban előírt valamennyi nitrát-érzékeny területet (beleértve a tápanyag-érzékeny területeket is, amelyeket külön kontúr vonal jelöli).

3-1. táblázat: Nitrátérzékeny területek aránya

<table>
<thead>
<tr>
<th>Alegység</th>
<th>Alegység neve</th>
<th>Alegység területe (km²)</th>
<th>Nitrát érzékeny terület (km²)</th>
<th>Területek aránya (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3-3</td>
<td>Fekete-víz</td>
<td>2513</td>
<td>1405</td>
<td>55,9</td>
</tr>
</tbody>
</table>

Az alegység területének 55,9 %-a nitrát-érzékeny besorolású. A kijelölés okát a következők képeztek:

- karsztos területek, ahol a felszínen vagy 10 m-en belül a felszín alatt mészkő, dolomit, mész- és dolomitmárga képződmények találhatók;
VÍZGYŰJTŐ-GAZDÁLKODÁSI TERV
3-3 Fekete-víz vízgyűjtő

- az üzemelő és távlati ivóvízbázis, ásvány- és gyógyvízhasznosítást szolgáló vízkivétel külön jogszabály szerint kijelölt vagy lehatárolt védőterületei;
- karsztos területek, ahol a felszín alatt 100 m-en belül mésző, dolomit, mész- és dolomitmárga képződmények találhatók, kivéve, ha lokális vízsgálat azt bizonyítja, hogy nitrogéntartalmú anyag a felszínről 100 év alatt sem érheti el a nevezett képződményeket;
- továbbá olyan területek, ahol a fő porózus-vízadó összlet teteje a felszín alatt 50 m-nél kisebb mélységben van.

A további, MEPAR szinten még nem lehatárolt területek előfordulása szempontjából a 3-2. térkép melléklet ad információt.

A VGT intézkedési javaslati között szerepel a nitrát-érzékeny területek felülvizsgálata, a következő Nitrát Akcióprogramhoz kapcsolódva.

3.3 Természetes fürdőhelyek

3.3.1 Jogszabályi háttér

A fürdővizek kijelölésének elveit a 78/2008 (IV. 3.) Korm. rendelet határozza meg. A rendelet szabályozza a fürdőhely kijelölésének eljárási rendjét, a vízminőség ellenőrzésének szabályait, a minősítés és a védőterület kijelölésének módját.

A rendelet hatálya a természetes fürdővizekre terjed ki és nem vonatkozik medencés közfürdőre, a gyógyfürdőre, valamint olyan mesterségesen létesített víztererekre, amelyek nincsenek összekötetésben sem felszín, sem felszín alatti vizekkel. A fürdővizek kijelölése a fürdési szezont megelőzően történik. A fürdővíz kijelölésére akkor kerülhet sor, ha a fürdőzők számának napi átlaga legalább 8 egybefüggő naptári héten várhatóan meghaladja a 100 főt, valamint ha a fürdőzés 78/2008 (IV. 3.) Korm. rendelet szerint szükséges közegészségügyi követelmények teljesülnek. Számuk évente változik az aktuális igények és a feltételek teljesülése függvényében.

A fürdőhely védőterülete a fürdőhely területét övező, a víz minőségének megőrzése érdekében meghatározott szárazföldi terület és vízfelszín, ennek jelzése a fürdőhely üzemeltetőjének a feladata. A kijelölt védőterület határait jól látható figyelmeztető táblákkal kell megjelölni és ott a külön jogszabályban meghatározott korlátozásokat be kell tartani. A fürdőhely kijelölésekor figyelembe kell venni a szennyvízbevezetésre előírt minimális távolságot. Folyóvizeknél - a fürdőhely folyásirány szerinti felső határa felett szakaszán, a fürdési idényben előforduló legkisebb vízhozam mellett - ajánlott szennyvíz-bevezetési távolságok az alábbiak:

- 500-szorosnál nagyobb hígulás esetén a fürdőhely feletti folyószakaszon legalább 5 km,
- 200-500-szoros hígulás esetén a fürdő feletti folyószakaszon legalább 15 km,
- 200-szoros hígulás esetén a fürdő feletti folyószakaszon legalább 25 km.

A védőterülesek végzése a már meglévő fürdőhelyek esetében is ellenőrizni kell, új strandok és/vagy új szennyvízbevezetés létesítésekor a tervekben elő kell írni ennek betartását. A védettség fizikálisan nem terjed ki az érintett víztest teljes hosszára, a hatástávolságok azonban a szennyvíz-befogadó kapcsolat ismeretében határozhatók csak meg.

A fenti jogszabály és a VKI védettségre vonatkozó követelményei értelmében a fürdőhely kijelölésével érintett víztesteket a tervekben meg kell jelölni, hogy az ebből adódó különleges

4 78/2008 (IV. 3.) Korm. rendelet a természetes fürdővizek minőségi követelményeiről, valamint a természetes fürdőhelyek kijelöléséről és üzemeltetéséről
követelményeket figyelembe lehessen venni az állapotértékelés (lásd még az 5.4 fejezetet), a célkitűzések és az intézkedési programok tervezése során. Az intézkedési programok tervezésekor a vízminőségi célok (fürdővíz követelmény) teljesíthetőségét a szennyvízbevezetésekre vonatkozó hatástávolságok betartásával kell biztosítani. A strandok lokális szennyezettségéből származó problémák megoldása (például a higiénés előírások nem megfelelő biztosítása) nem tartozik a VGT hatáskörébe. A természetes fürdőhely háttér szennyezettségének növekedésével összefüggő vízminőség romlás megakadályozására (bakteriológiai szennyezettség, vízvirágzás) az intézkedési programoknak ki kell terjednie.

3.3.2 Természetes fürdőhelyek kijelölésével érintett víztestek
Az alegységen nincs egyetlen fürdőhely sem, melyet a 3-3. térkép melléklet is mutat.

3.4 Védett természeti területek
A víztestek jó ökológiai állapota elérésének egyik legfontosabb célja a védett természeti területek, az élőhelyek és állatfajok védelmére kijelölt területek fennmaradásához szükséges feltételek biztosítása. A vízgyűjtő-gazdálkodás egyes szabályairól szóló 221/2004. (VII. 21.) Korm. rendelet szerint a víz jó ökológiai és kémiai állapota, valamint a jó ökológiai potenciál elérése és fenntartása a VKI és a természetvédelmi célok egyidejű teljesítésével lehet eredményes. A víz minden esetben meghatározója az adott helyen kialakult élővilág hosszú és sokoldalú alkalmazkodási folyamatának, pillanatnyi állapotának és sokszínűségének. A védett természeti területek esetében ezért a természetes folyamatok, a szerkezeti és működési sajátosságok és a sokféleségnek minél teljesebb megőrzése a legfontosabb feladat. Ez egyben kimagasló potenciált és értéket is jelent, melyek mind a politika, mind a jogalkotás legmagasabb szintjein is rögzítésre kerültek.

A védett természeti területek fennmaradását, állapotának megőrzését szolgáló VKI intézkedéseket prioritást élveznek, ezért maga a VGT tervezési folyamat is kiemelten kezeli azt.

3.4.1 Jogi háttér
A VKI és a vízgyűjtő-gazdálkodás egyes szabályairól szóló kormányrendelet szerint védett területeknek kell tekinteni a jogszabályban vagy a hatóság határozatában kijelölt körülhatárolható földterületet, melyekhez természeti értékek, víztest függő élőhelyek, fajok megőrzése érdekében előírások kapcsolódnak. Ennek értelmében a természetvédelmi alvátlan a törvényi szinttől egész a helyi szintű védelemig terjedhet, kiemelve azokat a védett elemeket, melyek a VGT szempontjából feltétlenül vizsgálandóak.

♦ A természet védelméről szóló 1996. évi LIII. törvény
 a) Országos jelentőségű védett természeti területek és értékek
 a. Egyedi jogszabálytal védett természeti területek:
 nemzeti park, tájvédelmi körzet, természetvédelmi terület, természeti emlék
 b. A törvény erejénél fogva ("ex lege") védett természeti területek
 a.) természetvédelmi területnek minősül valamennyi láp, szikes tó
 b.) természeti emléknek minősül valamennyi forrás, víznyelő
c. A törvény erejénél fogva ("ex lege") védett természeti értékek
barlangok

b) Helyi jelentőségű védett természeti területek
természetvédelmi terület, természeti emlék

275/2004. (X. 8.) Kormány rendelet az európai közösségi jelentőségű természetvédelmi rendeltetésű területekről

Az Európai Unió csatlakozásunkkal egyidejűleg kialakításra került az Európai Unió ökológiai hálózatához (un. Natura 2000 hálózat) csatlakozó magyarországi területek, melyek védett természeti területnek minősülnek. Az előírások a következő kategóriákat állították fel:

- különleges madárvédelmi terület
- különleges természetmegőrzési terület
- kiemelt jelentőségű természetmegőrzési terület

A területek kijelölése mellett a vonatkozó Uniós direktívák átvételével rögzítésre került az európai szintű védelmet jelentő hazánkban előforduló közösségi jelentőségű és kiemelt jelentőségű közösségi fajok, valamint a közösségi jelentőségű élőhelytípusok és a kiemelt jelentőségű közösségi élőhelytípusok.

Ökológiai hálózat

A természet védelméről szóló 1996. évi LIII. Törvény a Nemzeti Környezetvédelmi Program (Kt. 40. §) részét képező Nemzeti Természetvédelmi Alaptervben az ökológiai hálózat és az ökológiai (zöld) folyosók kialakításának és fenntartásának hosszú és középtávú szempontjait. Ezen túl további részeket nem határoz meg.

Az országos ökológiai hálózatról az Országos Területrendezési Tervről szóló 2003. évi XXVI. Törvény rendelkezik. Az ökológiai hálózat az országos területrendezési tervben megállapított önálló védelmi övezet, amelybe az országos jelentőségű természetes, illetve természetközeli területek és az azok között kapcsolatot teremtő ökológiai folyosók egységes, összefüggő rendszere tartozik, és amelynek részei a magterületek, az ökológiai folyosók és a pufferterületek. Ez utóbbi részeket a kiemelt térségi és megyei területrendezési tervek határozzák meg. Az ökológiai hálózat védelmét az alacsonyabb szintű tervekbé integráltan lehet érvényesíteni, azonban az ezekre vonatkozó szabályokat a településrendezési tervek nagyon ritkán fogalmaznak meg.
VÉDELEMRE TERVEZETT TERMÉSZETI TERÜLETEK

Az országos védelemre tervezett területekről nyilvános hozzáférhető azok településsoros, helyrajzi számos listája annak érdekében, hogy a védetté nyilvánítási folyamatot megelőzően a különböző szintű tervezési, fejlesztési döntéseknek azokat figyelembe lehessen venni. Ezek közé tartozik a VGT folyamata is.

Ramsari Egyezmény (1971) - 1979

A számos természetvédelmi tárgyú nemezetközi egyezemény között a VGT szempontjából kemelt helyet foglal el „A nemzetközi jelentőségű vizes területekről, különösen, mint a vízimaladarok élőhelyeiről” szóló un. Ramsari Egyezmény, mely a természetvédelmi államlók megállapodások legrégibb és eredetileg a rohamosan csökkenő vízimaladár-állományok kívántak a csatlakozó országok védelmét biztosítani. A tapasztalatok azonban hamar rávilágították arra a tényre, hogy önmagában az élőhelyek védelme nem elegendő, magát az ökológiai rendszer megőrizni (melynek meghatározó a víz mennyiségi és minőségi állapota), hogy képes legyen az ott előforduló fajok életfeltételeinek fentartó biztosítására.

Fajmegőrzési tervek

A védelmi előírások teljesítése érdekében egyes fajokra is készülnek un. fajmegőrzési tervek, melyek a védelem további feladatait határozzák meg. Ezek védelme jelentős részben a védett területeken valósul meg.

3.4.2 Védett területek listája

A vízgyűjtő-gazdálkodási tervek készítése során a védett területek listájának térképi összeállítása és ezek ellenőrzése, illetve a tervezés részeként elvégzendő egyszerűsített értékeléshez rendelkezésre álló alap- és háttérinformációk rögzítése a feladat.

A különböző szempontok szerint, jogszabályok általi védettség alá tartozó területeket az érintett víztestek megjelölésével a 3-2. táblázat és a 3-2. melléklet tartalmazza, a víztestek és a védett természeti területek tematikus térképeit pedig a 3-4. és 3-5. térkép mellékletben mutatjuk be.

Az információk alapján megállapítható, hogy a VKI különböző típusú víztestei jelentős mértékben érintik a védett természeti területeket. Ez a sekély felszín alatti víztestek esetében szinte minden védett területet, míg a folyó és a tó víztestek esetében azok többségének az érintettségét jelenti.

3-2. táblázat: Víztől függő védett természeti területek a magyarországi területén

<table>
<thead>
<tr>
<th>Neve és kódja</th>
<th>A védelem szintje</th>
<th>Jellemző víztől függő élőhelytípusok</th>
<th>Érintett víztestek</th>
</tr>
</thead>
<tbody>
<tr>
<td>Duna-Dráva NP</td>
<td>országosan védett</td>
<td>hínártársulások, ártéri gyomtársulások, bokorfüzesek, ligeterdők, ártéri mocsárrétek</td>
<td>Vízfolyások: Gordisai-csatorna és mellékvízfolyásai (AEP523), Régi-Fekete-víz (AEP914), Fekete-víz (AEP478), Sellyei-Gürü-csatorna (AEP956), Dráva alsó (AEP705), Dráva alsó (AEP438)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Állóvizek: -</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Felszín alatti vizek: Dráva-völgy Barcs alatt (sp.3.3.2), Fekete-víz vízgyűjtő (sp.3.3.1)</td>
</tr>
</tbody>
</table>
VÍZGYŰJTŐ-GAZDÁLKODÁSI TERV

3-3 Fekete-víz vízgyűjtő

<table>
<thead>
<tr>
<th>Neve és kódja</th>
<th>A védelem szintje</th>
<th>Jellemző víztől függő élőhelytípusok</th>
<th>Érintett víztestek</th>
</tr>
</thead>
</table>
| Mecsek HUDD10007 | Natura 2000 KMT | hínarasok, patakparti magaskórósok, patakparti ligeterdők, mezofil erdők, forrásgyepek | Vízfolyások: Aszai-árok (AEP285), Bükkösvíz és mellékvízfolyásai (AEP363)
Állóvizek: -
Felszín alatti vizek: Mecsek (sh.1.12), Mecsek (h.1.12), Mecsek (k.1.8) |
| Nyugat-Dráva HUDD10002 | Natura 2000 KMT | hínártúrsulások, ártéri gyomtársulások, bokorfüzesek, ligeterdők, ártéri mocsárrétek | Vízfolyások: Dráva alsó (AEP438)
Állóvizek: -
Felszín alatti vizek: Fekete-víz vízgyűjtő (sp.3.3.1) |
| Darányi borókás HUDD20051 | Natura 2000 JKJTT | lápi hínarasok, mocsárrétek, láprétek, ligeterdők, láperdők, mezofil erdők | Vízfolyások: -
Állóvizek: -
Felszín alatti vizek: Fekete-víz vízgyűjtő (sp.3.3.1) |
| Dél-Zselic HUDD20004 | Natura 2000 JKJTT | hínarasok, patakparti magaskórósok, mocsárrétek, patakparti ligeterdők, mezofil erdők, forrásgyepek | Vízfolyások: Almás-patak és mellékvízfolyásai (AEP264), Gyöngyös (főág) és mellékvízfolyásai (AEP544), Gyöngyös (Keleti ág) (AEP545)
Állóvizek: -
Felszín alatti vizek: - |
| Kelet-Dráva HUDD20007 | Natura 2000 JKJTT | hínártúrsulások, ártéri gyomtársulások, bokorfüzesek, ligeterdők, ártéri mocsárrétek | Vízfolyások: Gordsísi-csatorna és mellékvízfolyásai (AEP523), Régi-Fekete-víz (AEP914), Fekete-víz (AEP478), Sellyei-Gürü-csatorna (AEP956), Korcsina-főcsatorna és mellékvízfolyásai (AEP705), Dráva alsó (AEP438)
Állóvizek: -
Felszín alatti vizek: Dráva-völgy Barcs alatt (sp.3.3.2) |
| Közép-Dráva HUDD20056 | Natura 2000 JKJTT | hínártúrsulások, ártéri gyomtársulások, bokorfüzesek, ligeterdők, ártéri mocsárrétek | Vízfolyások: Dráva alsó (AEP438)
Állóvizek: -
Felszín alatti vizek: Dráva-völgy Barcs alatt (sp.3.3.2) |
| Mecsek HUDD20030 | Natura 2000 JKJTT | vízi hínártúrsulások, patakparti ligeterdők, patakparti magaskórósok, mocsárrétek és nedves rétek, forrásgyepek | Vízfolyások: Bükkösvíz és mellékvízfolyásai (AEP363)
Állóvizek: -
Felszín alatti vizek: Mecsek (sh.1.12), Mecsek (h.1.12), Mecsek (k.1.8) |
| Ormánsági erdők HUDD20008 | Natura 2000 JKJTT | hínarasok, patakparti magaskórósok, mocsárrétek, láprétek, ligeterdők, láperdők, mezofil erdők | Vízfolyások: Gyöngyös (Nyugati ág) alsó (AEP547), Gyöngyös (Nyugati ág) felső (AEP546), Hegyadó-lajos-patak (AEP571), Egyesült-Gyöngyös (AEP457), Almás-patak felső (AEP263), Almás-patak alsó (AEP262), Fekete-víz (AEP478), Ökrös-Bükkösvíz (AEP852), Pécsi-víz alsó (AEP876), Kőcsénye-csatorna (AEP716), Korcsina-főcsatorna és mellékvízfolyásai (AEP705), Sellyei-Gürü-csatorna (AEP956)
Állóvizek: -
Felszín alatti vizek: Dráva-völgy Barcs alatt (sp.3.3.2), Fekete-víz vízgyűjtő (sp.3.3.1) |
A védett természeti terület

<table>
<thead>
<tr>
<th>Neve és kódja</th>
<th>A védelem szintje</th>
<th>Jellemző víztől függő élőhelytípusok</th>
<th>Érintett víztestek</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ormánsági vizes élőhelyek és gyepek HUD20052</td>
<td>Natura 2000 JKJTT</td>
<td>hínarasok, patakparti magaskórósok, mocsárrétek, láprétek, ligeterdők, láperdők</td>
<td>Vízfolyások: Fekete-víz (AEP478), Körcsönycsatorna (AEP716), Kocsina-főcsatorna és mellékvízfolyásai (AEP705), Selleyi-Gűri-csatorna (AEP956), Gyöngyös (főag) felső (AEP542)</td>
</tr>
<tr>
<td>Öcsárd-hegyszentmártoni völgyek HUD20010</td>
<td>Natura 2000 JKJTT</td>
<td>hínarasok, patakparti magaskórósok, mocsárrétek, patakparti ligeterdők, mezofil erdők</td>
<td>Vízfolyások: Hegyadó-patak felső és Öcsárd-patak (AEP570)</td>
</tr>
<tr>
<td>Pécsi-sík HUD20066</td>
<td>Natura 2000 JKJTT</td>
<td>hínarasok, patakparti magaskórósok, mocsárrétek, láprétek, ligeterdők</td>
<td>Vízfolyások: Pécsi-víz és mellékvízfolyásai (AEP877), Pécsi-víz középső (AEP875)</td>
</tr>
</tbody>
</table>

Bár színtén fontos lenne a védelemre tervezett területek, valamint az ex lege védett lápok és szikes tavak területeinek pontos ismerete, azonban a háttérinformációk hiánya miatt ezek egyelőre nem kerülhettek feldolgozásra.

3-3. táblázat: Víztől függő védett természeti területek főbb jellemzői

<table>
<thead>
<tr>
<th>A védelem szintje</th>
<th>Területe (ha)</th>
<th>Jellemző víztől függő élőhelytípusok</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nemzeti Park</td>
<td>7500</td>
<td>hínártársulások, ártéri gyomtársulások, bokorfüzesek, ligeterdők, ártéri mocsárrétek</td>
</tr>
<tr>
<td>TK</td>
<td>9000</td>
<td>hínarasok, patakparti magaskórósok, ligeterdők, mezofil erdők, kaszálrórétek</td>
</tr>
<tr>
<td>TT</td>
<td>250</td>
<td>ligeterdők, mezofil erdők</td>
</tr>
<tr>
<td>NATURA 2000 KMT</td>
<td>35722</td>
<td>hínarasok, patakparti magaskórósok, ligeterdők, mezofil erdők, ártéri gyomtársulások, bokorfüzesek, ligeterdők, ártéri mocsárrétek</td>
</tr>
<tr>
<td>NATURA 2000 JKJTT</td>
<td>32237</td>
<td>hínarasok, patakparti magaskórósok, ligeterdők, mezofil erdők, ártéri gyomtársulások, bokorfüzesek, ligeterdők, ártéri mocsárrétek</td>
</tr>
</tbody>
</table>
Hínártársulások: a tervezési terület lassú folyású vagy állóvízi víztesteiben, víztestein jelennek meg, elsősorban holtágak, oldalágak területén, folyóvízi öblözetekben, állóvizekben és lassan mozgó vízű patakokban. Többnyire gyökerező hínarasok, főképp békaszőlös hínarasok, de tápanyagban dúsabb, alig mozgó részekben békalcencsés, illetve lápi jellegű hínarasok is találhatók, a kis vízfolyásokra pedig a víziboglárkás hínarasok jellemzőek. Vízben élő élőhelytípusok, így vízttől való függésük közvetlen, csak akkor tudnak kialakulni, ha a területen szabad vízfelületek találhatók. A konkrét fajosztálytól függ a víz áramlás, tápanyag és oxigén ellátottsági, valamint pH viszonya határozza meg. A gyökerező hínárok stabilabb élőhelyeket jelentnek, a lebegőhínarak nyújtotta élettér alatt az időjárási viszontagságainak is közvetlenül kitett.

Ártéri gyomtársulások: nagy folyó ártereihez gyakran szárzatra illetve víz alá kerülő iszapfelzinek kialakulása közvetlenül függ, a leggyakrabban a természetes áradási dinamika megőrzésével, de ekkor sem állandó, hanem folyton változó helyszínek és állapotban.

Bokorfüzesek: Nyers homok vagy kavicKM tokon vagy ártéri gyomtársulások helyén létrejövő, könnyen megtételepedő fűzfajok alkotta cserjészetek. Többnyire erősen zárt cserjészint jellemzi az élőhelyeket, melyek elviselik a hosszabb-rövidebb idejű előírásokat, és természetben a kisebb áradások finom hordalékának lerakódását gyorsítják a vízszintek kidobását.

Ligeterdők: Nagy folyók ártereihez (olykor mentett oldalfái) erdei, alacsonyabb térzíneken puha félzöld (észla, nyár, éger) fajokkal, magasabb térzíneken pedig keményfal (tölgy, kóris, szil) jellemző. A folyóparti szükségszinten a bokorfüzeseket követik a talajok kialakulása és a szigetek teljes stabilizálódása, továbbá feltöltéstől függően változhatnak a megközelítési pontok. Az élőhelytípus változó, függ a vízszinttől és a víz áramlásról, például folyó vízszintjének változásától függ, ott, ahol a víz áramlása gyors és a területen fokozott víztartásválasztás jelenik meg.

Patakparti ligeterdők: A nagy folyókat kisérő ligeterdőktől eltérően inkább fűz és éger dominált, a nagy folyók puha fajokat alkotta cserjezsetek. A lehetséges vízszint változásának hatása változatos, de azoknál jóval keskenyebb sávokban is jellemző. Az aljnövényzetben jellemző a zavarásmentesség és a kevésbé^-es nitrofil növények nagy aránya. A folyóvíz a talajba és száraz fogantyúvá válhat, így a vízben élő zsontványok és károsak lehetnek a víztérdéken található nemzeteinek. Az élőhelytípus változó, hogy az élőhelytől függően változik a vízszinttől és a víz áramlásról, például a vízszint változásától függ, ott, ahol a víz áramlása gyors és a területen fokozott víztartásválasztás jelenik meg.

3. fejezet

Védelem alatt álló területek
Ártéri mocsárrétek: Idősakos előírások és kihelyezett táplálékok vizsgálati győztes sérség. Igen sokféle élőhely lehetnek, jellemzően több szintesek, a felsőbb szintben magas növényű fű- és sásfajok, az alsóbb szintben pedig kétszükségűek dominanciájával. Az előírások hatására ezerben és gyomfajok szaporodhatnak fel bennük. Jellemzően a folyóvizekből a talajba szivárgó vizek táplálják az élőhelyeket, az előírás nem szükséges, inkább annak toleranciája állapítható meg, a túl gyakori előírások ugyanis erősen gyomorosító hatásúak, az ártéri gyomtrájánokhoz hasonló állapotot alakítanak ki.

Láprétek: A mocsárrétekhez nagyon hasonló, azoktól pangó vizes, oxigéneszegény ökológiai állapotuk miatt különbözőek leginkább, de jellemzően stabilabb és bővebb vízellátottság is. Jellemzően inkább sásfajok dominálnak az az egészhűk között, zömében lápréteket esetében igen karakteresek a semmilyenekek kialakuló kis felületű hínarok mikoréhelyek. A lápréte vizes szárazkori és patakból vagy közvetlenül talajvízből is, így a társulások közvetlenül ki vannak téve a vízmennyiség változásainak, de fontos a nem túl nagy áramlás is, mert a gyors vízcserélés meggyengülne az állapotot alakítani.

Láperdelek: Pangó vizes, állandó vízborítással vagy nedves talajhelyeken kívül, jellemzően egy-két szintes, laza lombkoronával, gyér cserjeszinttel és dús, lápi fajokban bővelkedő gyepeszinttel az égerlápok esetében igen karakteresek a semmilyenek dominánsa a kétszikűek nagyobb arányban jelen az alsóbb szintekben. Tajavizeltek közvetlenül vannak téve a vízmennyiség változásainak, de fontos a nem túl nagy áramlás is, mert a gyors vízcserélés oxigéndúsabb állapotot alakít ki, ami a lápi jelleg elvesztését eredményezi.

Patakparti magaskórósok: Kis vízfolyásokat kíséroló, nagyméretű lágyszárú fajok dominálta. A társulások közvetlenül tévődnek a vízmennyiség változásainak, de fontos a sebanok és a nem túl nagy áramlás is, mert a gyors vízcserélés oxigéndúsabb állapotot alakít ki, ami a lápi jelleg elvesztését eredményezi.

Patakparti magaskórósok: Kis vízfolyásokat kíséroló, nagyméretű lágyszárú fajok dominálta. A társulások közvetlenül tévődnek a vízmennyiség változásainak, de fontos a sebanok és a nem túl nagy áramlás is, mert a gyors vízcserélés oxigéndúsabb állapotot alakít ki, ami a lápi jelleg elvesztését eredményezi.

3.5 Halak életfeltételeinek biztosítására kijelölt felszíni vizek

A halak életfeltételeinek biztosítása érdekében kijelölt, védelemre vagy javításra szoruló felszíni vizek azok a külön jogszabályban meghatározott vízfolyások és állóvizek, amelyek fenntartható módon képesek biztosítani, illetve a vízszennyezettség csökkentése vagy megszüntetése esetén képesek lennének biztosítani a vízre jellemző összes háló layout és természetes biológiai sokféleségét. A védettészetet az ivóvízvőzérelre használt, vagy ivóvízbázisnak kijelölt felszíni víz, valamint a halak életfeltételeinek biztosítására kijelölt felszíni vizek szennyezettségi határértékeiről és azok ellenőrzéséről szóló 6/2002 (XI. 5.) KvVM rendelet mondja ki. A rendelet hatálya nem terjed ki a halastavi és az intenzív haltermelés céljait szolgáló természetes vagy mesterséges tavak vízére.
A halas vizeket a rendelet három típusba sorolja, melyekben előforduló fajok életfeltételeinek biztosításához a rendelet 4. számú mellékletben vízszennyezettségi határértékeket ír elő:

- **Pisztrángos (salmonid) vizek:** azon halas vizek, amelyek pizstráng szinttájú halfajokkal jellemezhetők (jellemző fajaik a sebes pizstráng (Salmo trutta m. fario), a fürge csele (Phoxinus phoxinus), a kövi csík (Barbatula barbatula) stb.).

- **Márnás vizek:** azon halas vizek, amelyek márna szinttájú halfajokkal jellemezhetők (jellemző fajaik a padue (Chondrostoma nasus), a márna fajok (Barbus spp.) és a bucó fajok (Zingel spp.), a leánykoncér (Rutilus pigus virgo) stb.).

- **Dévéres (cyprinid) vizek:** azon halas vizek, amelyek jellemzően a dévér szinttájú, valamint a tavi, illetve a mocsári halfajokkal jellemezhetők (jellemző fajaik a dévér (Abramis brama), a vörösszárnyú keszeg (Scardinius erythrophthalmus), a sügér (Perca fluviatilis), a csuka (Esox lucius), a ponty (Cyprinus carpio), a lápi póc (Umbra krameri), az angolna (Anguililla anguilla) stb.).

A kijelölést az illetékes környezetvédelmi hatóságok ötévente felülvizsgálják. Országos szinten jelenleg hét vízfolyás (illetve azoknak meghatározott szakaszai) tartozik a rendelet hatálya alá, ezek mindegyike víztest, melyek ezáltal védetté válnak. Ilyen víztest azonban az alegység területén nem található.
4 Monitoring hálózatok és programok

A VKI monitoring olyan rendszeres mintavételi, mérési, vizsgálati, észlelési tevékenységet jelent, mely a felszíni és felszín alatti vizek mennyiségi és minőségi állapotának megállapítását, jellemzését, illetve az állapot rövid és hosszú távú változásának leírását lehetővé teszi.

A VKI valamennyi célkitűzése, a vizeink jó állapotba helyezése, az ehhez szükséges intézkedések megalapozása mind a monitoring hálózat működésén alapuló állapotértékelésen nyugszik. Egy jól kialakított, felesleges elemeket nem tartalmazó monitoring rendszer működtetési költségeinek sokszorosát lehet megtakarítani az intézkedések szintjén, mivel az segítséget nyújt az intézkedések megalapozásában és végrehajtásában, valamint hatékonyságuk nyomonkövetésében.

A Víz Keretirányelv szerint 2006. december 22-ig a tagállamoknak gondoskodni kellett az irányelv követelményrendszerének megfelelő monitoring rendszer megtervezéséről és működtetésük elindításáról, mind a felszíni, mind a felszín alatti vizek állapotának megfigyelése érdekében. A monitoring hálózat térképi bemutatása a 4-1. – 4-6. térkép melléklettel történik. Magyarországon a korábbi monitoring rendszerek átalakításával, továbbfejlesztésével történt meg a VKI szerinti ún. többszintű monitoring rendszer kialakítása, mely az alábbiak szerint épül fel:

- A feltáró monitoring hasonlóan a korábbi országos és regionális törzshálózati monitoringhoz, alapvetően a vizek általános állapotértékelését, jellemzését tűzi ki célul.
- Az operatív monitoring az ökológiai és kémiai szempontból veszélyeztetett vizek vizsgálatát célzó, és az intézkedések eredményességét ellenőrzi.
- A felszíni vizek vizsgálati monitoringjának működtetése olyan bizonytalanságok esetében szükséges, ha valamilyen határérték túllépésén az oka ismeretlen, vagy rendkívüli események nagyságát, következményeit kell megismerni, vagy ahol operatív monitoring még nem üzemel, de az intézkedési program kidolgozásához információk gyűjtésére van szükség.

Bár a felszíni és felszín alatti vizek jelenlegi monitoring programja kielégíti a VKI előírásait, az állapotértékelés során nyilvánvalóvá vált, hogy a konkrét intézkedések tervezéséhez és a már beindított intézkedési programok hatásának ellenőrzéséhez a monitoring hálózat és programok bővítésére, megerősítésére van szükség.

4.1 Felszíni vizek monitoringja

A felszíni vizek esetén a monitoring kiterjed az ökológiai és a kémiai állapot szempontjából indikatív biológiai elemek és speciális veszélyes anyagok meghatározására, valamint azokra a fizikai, kémiai és hidromorfológiai jellemzőkre, amelyek az ökológiai állapotot befolyásolják.

A Víz Keretirányelv előírásai szerinti üzemeltetett monitoringból nyert adatok és a korábbi hazai monitoringban gyűjtött adatok együttesen általában lehetővé teszik a víztestek jelentős részének értékelését. A kiemelten veszélyes anyagok vizsgálata azonban monitoring szempontból más megközelítést igényelt. A VKI miatt a felszíni vizek megfigyelésének jellege, az eddig alapvetően kémiai és hidrológiai orientáltságú hagyományos rendszer, kibővült biológiai és morfológiai vizsgálatokkal. A biológiai vizsgálatok az alábbi élőlénycsoportokra terjednek ki:

- lebegő életmódot folytató algák (fitoplankton),
- makroszkópikus vízi lágyszárú növényzet (makrofita),
- aljzaton, vagy egyéb szilárd felületen bevonatot képző algák (fitobenton),
- fénéklakó makroszkópikus vízi gerinctelenek (makrogerinctelenek), és
- halak.
A hidromorfológiai vizsgálatok elemei az alábbiak: hidrológiai viszonyok, az áramlás méréte és dinamikája, a tartózkodási idő, a kapcsolat a felszín alatti víztestekkel, a folyó folytonossága, a morfológiai viszonyok, a folyó mélységének és szélességének változékonysága, a tó mélységének változékonysága, a mederágy méréte, szerkezete és anyaga, a parti sáv és tópart szerkezete.

A biológiai elemekre hatással lévő fizikai, kémiai elemek két nagy csoportja az általános összetevők és különleges szennyezőanyagok. Az általános jellemzők egy része a biológiai élethez nélkülözhetetlen alapot adnak az élő vizeknek, ilyenek például a tápanyagok, az oxigén, különféle sók, más része a vizekben keletkező, vagy azokba kívülről bekerülő szerves anyag mennyiségére jellemző paraméter.

A kiemelten veszélyes anyagok, illetve az elsőbbségi anyagok azok, amelyek a vízi környezetre vagy a vízi környezetben keresztül jelentős kockázatot jelentenek, beleértve az ivóvíz kitermelésére kötött programokat is.

Az operatív programok a víztestek kockázatossági besorolása alapján kerültek kialakításra, kettő az állóvizekre: a tápanyagtartalom miatt kockázatos tavak és a hidromorfológiai beavatkozások miatt kockázatos tavak alprogramja. Az alegységen lévő mesterséges állóvíz víztesten ilyen operatív méréseket nem végeznek.

A vízfolyás víztestekre hat különböző operatív alprogram meghatározása történt meg, amelyből kettő vízminőségi, négy hidromorfológiai problémák miatt szükséges. A területen a veszélyes anyag miatt kockázatos folyók alprogramja a víztesten 2 monitoring pontra vonatkozik, míg a tápanyag és szervesanyag miatt kockázatos folyók alprogramja 9 víztestre, illetve monitoring pontra terjed ki.

A vízszint mérési program keretében 52 kútban mérik a vízszintet, a vízhozammérési program pedig alapvetően forrásokra vonatkozik, néhány esetben azonban termálkútba elfolyó

4.2 Felszín alatti vizek monitoringja

A felszín alatti vizeknél a programok a kémiai és a mennyiségi állapot megfigyelését célozzák meg. A felszín alatti vizek mennyiségi feltáró monitoringja a vízkészlet meghatározásához szükséges vízrajzi törzsállomásokból, helyi jelentőségű üzemű állomásokból, és a távlati vízbázisok megfigyelőkútjaiból került kiválasztásra.

A vízszint mérési program keretében 52 kútban mérik a vízszintet, a vízhozammérési program pedig alapvetően forrásokra vonatkozik, néhány esetben azonban termálkútba elfolyó
vízmennyiség mérésére is szolgál. Az alegységen összesen 4 forrás helyen mérnek vízhozamot évente legalább egyszer.

A felszín alatti víz minőségének meghatározása céljából működtetett kémiai feltáró monitoring programok a vízadó típusa, mélysége, védettsége szerint differenciálódnak. A környezethasználók által végzett mérések, megfigyelések és e program részét képezik, például a vízművek termelőkútjainak vízminőségé viszgálatai. A sérülékeny külterületi program a sekély porózus, hegyvidéki és nyílt hideg karszt víztestekre vonatkozik. A sérülékeny belterületi program ugyanezeket a víztest típusokat célozza, csak az ipari területeken, vagy településeken elhelyezkedő kutakban. E két programban összesen 81 monitoring hely van. A védett rétegvíz programban a vízminőségi mintavétel évente csak egy alkalommal történik 23 monitoring ponton. A termálvíz program a porózus termál és a meleg vízű karszt víztestekre terjed ki, mely keretében 2 alegységi monitoring ponton hatévenként egyszeri mintavétel szükséges.

A gyenge kémiai állapotú felszín alatti víztesteken 2009. december 22-től operatív monitoringot kell üzemeltetni. Az állapotértékelés eredményeképpen számos víztest kapott gyenge minősítést, amelyet az alap kémiai paraméterek (pl. nitrátr), és/vagy a peszticidek (diffúz terhelés) és/vagy alifás klórozott szénhidrogének (pontszerű szennyezők) küszöbértéket meghaladó jelenléte indokolta. Ennek megfelelően négyféle operatív kémiai program végrehajtása szükséges, ebből kettő az alapkémiai paraméterek évi 2, illetve évi 4 mérését, míg egy program a növényvédő-szerke és egy a klórozott szénhidrogének mérését célozza.

A felszín alatti vizek monitoring programjának monitoring helyei és vizsgált jellemzői a 4-2. mellékletben tekinthetők meg.

4.3 Védett területek monitoringja

A védett területek esetén a feszíni és felszín alatti vizek megfigyeléséért olyan jellemzők egészítik ki, amelyeket az egyes védett terület kialakítását előíró jogszabály határoz meg. A védett területek monitoring-programja az ívövízikvételek védőterületeire, a tápanyag- és nitrátérzékeny területekre, a természetes fürdőhelyekre, a Natura2000 területekre és az őshonos halak életfeltételeinek biztosítása céljából védett területekre terjed ki. Ezen területekre eső víztestek, víztest-szakaszok monitoringjára egyaránt jellemző, hogy az eddig leírt általános követelményrendszere kívül a vizsgálati irányok és gyakoriságok terén a védett területeken külön-külön érvényes hazai és honosított nemzetközi jogszabályokban leírt követelményeket is teljesítik.

A védett területek monitoring programjának monitoring helyeit a 4-3. melléklet sorolja fel.
5 A vizek állapotának minősítése

Az értékelés alapját a VKI-ban és a kapcsolódó útmutatókban előírt, részben közösségi, részben nemzeti szinten rögzített minősítési módszerek képezik. Az állapotértékeléshez a monitoring szolgáltat információt, melyet a 4. fejezetben ismertettünk. Az állapotértékelés módszertani leírása az országos tervben és annak háttér jelentéseiben található meg, a következő pontokban az alegységre vonatkozó eredményeket ismertetjük.

5.1 Vízfolyás víztestek ökológiai állapotának minősítése

Az állapotértékelés a VKI V. melléklete és az ECOSTAT útmutatókon alapul az öt biológiai elemre (fitoplankton, fitobenton, makrofit, makrozoobenton és halak), a háttér (támogató) fizikai-kémiai jellemzőkre és a hidromorfológiai állapot jellemzésére készített ötosztályos minősítő rendszerek szerint. Az értékelés eredményét összesítő integrált ökológiai állapotot az 5-1. térkép melléklet mutatja be, a részleteket (víztestek biológiai, fizikai-kémiai és a hidromorfológiai állapota) az 5-2. – 5-4. térkép mellékletek tartalmazzák. A térképeken a mesterséges és az erősen módosított vízfolyásokat a természetesektől eltérő módon (szaggatott vonallal) jelöltük. A víztestenkénti minősítés eredményeit az 5-1. mellékletben adjuk meg.

5.1.1 Biológiai állapot értékelése

Az elmúlt két évben a VKI szerint átalakított magyar monitoring rendszer eredményei számos új víztestre biztosítottak biológiai adatokat. A minősítés előlény együttesenként történt, abban az esetben, ha egy víztesten belül több mintavételi hely adata is rendelkezésre állt, a víztestre vonatkozó osztálybesorolást az egyes pontokra megadott minősítések számának átlaga jelenti. A pontminták eredményeinek a víztest teljes hosszára történő kiterjesztése – a kevés mérésszám miatt – kényszerűségből történt, azonban tudnunk kell, hogy a víztestek homogenitására vonatkozó feltevés számottevően gyengíti az eredmények megbízhatóságát. A minősítés megbízhatóságát egy háromosztályos skálán értékelhető. A nagyon bizonytalannak eredmények a végső (integrált) minősítésből kimeradtak.

Az 5-1. táblázatban látható a biológiai minősítés során értékelt víztestek száma és az eredmények (osztályok) megoszlása előlény csoportonként.

5 Az ún. EQR-szám a víztest állapotát egy 0-1 skálahán értékel. Annál magasabb a szám, minél közelebb van az állapot a referenciaviszonyokhoz. Az ötosztályos minősítési rendszer határait ezen a 0-1 skálahatározzák meg a módszer érvényesítése (validálása) során. Az osztályhatárok nem szükségképpen jelentenek egyenletes (2 tizedenként változó) kiosztást a 0-1 skálahán.
5-1. táblázat: A biológiai minősítés eredményeinek megoszlása élőlény együttesenként

<table>
<thead>
<tr>
<th>Osztály</th>
<th>Fitobentosz</th>
<th>Fitoplankton</th>
<th>Makrofiton</th>
<th>Makrozoobentosz</th>
<th>Halak</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kiváló</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Jó</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Mérsékelt</td>
<td>5</td>
<td>3</td>
<td>3</td>
<td>15</td>
<td>2</td>
</tr>
<tr>
<td>Gyenge</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>8</td>
<td>2</td>
</tr>
<tr>
<td>Rossz</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Nincs adat</td>
<td>24</td>
<td>22</td>
<td>28</td>
<td>4</td>
<td>23</td>
</tr>
<tr>
<td>Összes vizsgált víztest</td>
<td>8</td>
<td>10</td>
<td>4</td>
<td>28</td>
<td>9</td>
</tr>
</tbody>
</table>

5-1. ábra: Víztestek számának megoszlása a biológiai minősítésre kapott osztályba sorolás szerint élőlény együttesenként

Az 5-2. táblázat az összesített osztályzat szerint kapott eredményeket foglalja össze, víztest kategóriákra bontva (Az „egy rossz mind rossz” elve követve, mértékedőn ak a legalacsonyabb osztályt tekintve). A biológiai minősítés eredményei az 5-2 térkép mellékletben vizuálisan is áttekinthető.
5-2. táblázat: Az összesített biológiai minősítés eredményei víztest kategóriánként

<table>
<thead>
<tr>
<th>Osztály</th>
<th>Víztest kategória</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Természetes</td>
</tr>
<tr>
<td>Kiváló</td>
<td></td>
</tr>
<tr>
<td>Jó</td>
<td></td>
</tr>
<tr>
<td>Mérsékelt</td>
<td></td>
</tr>
<tr>
<td>Gyenge</td>
<td></td>
</tr>
<tr>
<td>Rossz</td>
<td></td>
</tr>
<tr>
<td>Nincs adat</td>
<td></td>
</tr>
<tr>
<td>Összes vízsgált víztest</td>
<td>10</td>
</tr>
</tbody>
</table>

5.1.1.1 Természetes víztestek
Az alegységhez tartozó 12 db természetes vízfolyás víztest közül 10 víztestre készült biológiai minősítés. Egy víztest esetében sem volt mérési adat mind az őt élőlénycsoportra, 2 víztestre volt legalább három biológiai elemre adat.

Az azonos víztestre vonatkozó biológiai eredmények sok esetben jelentős szórást mutatnak. Ennek több oka is van: (i) egyrészt az a tény, hogy a biológiai elemek különböző módon érzékenyek a külső (természetes és antropogén) hatásokra; másrészt figyelembe kell vennünk, hogy az alacsony mérésszám és a reprezentatívitásból származó problémák miatt a minősítés eredménye összességében jelentős bizonytalanságot hordoz.

A kiváló vagy jó állapotú osztályzatot kapott víz nem volt. Figyelemre méltó, hogy egyetlen olyan vízfolyás sincs, amelyik akár egyetlen vízszinttel élőlénycsoportra kiváló minősítést kapott volna (ilyen csak az erősen módosított víztestek között fordult elő). A gyenge és a mérsékelt állapotú víztestek aránya a legmagasabb. Rossz állapotú víz a makrogerinctelenek minősítése szerint volt csak.

Nagyon heterogén az alegység víztesteinek állapota, a terhelés formái és mértéke. Légyszennyezettebb a Pécs város tisztított szennyvízének befogadója a Pécsi-víz.

5.1.1.2 Erősen módosított víztestek

Az alegységen belül a tervezés során összesen 20 vízfolyás víztestet jelöltünk ki erősen módosított állapotúnak, ezek 95%-ra készült biológiai minősítés. Az eredményeket tekintve az arányok a természetes vízfolyásokéhoz hasonlók, de a jó állapotot elérő víztestek száma a módszertanból következően az alkalmazott korrekció miatt magasabb.
5.1.1.3 Mesterséges víztestek

A mesterséges víztestek esetében is a maximális ökológiai potenciál a viszonyítási alap, és az ökológiai potenciált kell minősíteni. Ennek módszerére azonban esetenként eltérő az erősen módosítottakéhoz képest, mert alapvetően a funkció, és nem a hasonlóság határozza meg a minősítést. A jelenleg alkalmazott módszertan egyfelére ilyen különbséget nem tesz, a minősítés az erősen módosított víztestekkel azonos módon történt (általában egy osztály eltolás).

Az alegységen mesterséges vízfolyás víztest nem található.

5.1.2 Fiziko-kémiai állapot értékelése

A vízfolyásokra vonatkozóan a VKI öt komponens csoportra írja elő a fizikai és kémiai jellemzők vizsgálatát, ezek az oxigén háztartás jellemzői, tápanyag kínálat, sótartalom, savasodási állapot, és a hőmérsékleti viszonyok. A minősítés őt osztályos, azonban az integrált ökológiai állapot meghatározásánál csak a kiváló/jó és a jó/közepes osztályhatáratokat kell figyelembe venni. Utóbbiak esetében lényegében azt kell vizsgálni, hogy a biológiai alapon történt besorolást a fizikai-kémiai állapot is alátámasztja-e. Ha nem, akkor az ökológiai állapot sem lehet jó.

A felsorolt komponens csoportokra és a víztípusok összevonásával kialakított víztest-csoportokra specifikus osztályozási rendszer készült. A fiziko-kémiai minősítés végeredményét az „egy rossz mind rossz” elvet alkalmazva a komponens csoportok legalacsonyabb osztály értéke adja.

A hőmérsékleti viszonyokra nem rendelkezünk víztípustól függő, állapotra vonatkozó határértékekkel. A termálvíz és hűtővíz bevezetésekre a megengedhető (téli-nyári) hőmérsékletnövekedés és az elkeveredés utáni maximális vízhőmérsékletet (T=30 °C) víztípustól független értékei alkalmazandók. Hőmérsékleti viszonyokra általános, víztestenkénti minősítés nem történt, a kritériumokat ott kell alkalmazni, ahol antropogén eredetű hőterhelés jelentkezik.

A sótartalomra a jó/közepes osztályhatárt, mint befogadóra vonatkozó (immissziós) határérték jelenik meg követelményként.

A támogató kémiai jellemzők esetében alapvetően nincs különbség aszerint, hogy a víztest természetes, erősen módosított vagy mesterséges kategóriába tartozik. Az ökológusok egyöntetű véleménye alapján, a VKI elveivel összhangban a jó ökológiai állapotnak megfelelő vízminőséget a potenciál esetében is el kell érni. Ezen megfontolások alapján a természetes vizekre megállapított osztályhatárok változatlanul alkalmazandók az erősen módosított víztestekre, fontos azonban, hogy a határértékeket a hidromorfológiai viszonyoknak megfelelő típus-csoport szerint kell kiválasztani. A minősítési rendszer a mesterséges víztestekre is alkalmazható, a funkció alapján történő csoportosítás és a természetes víztípusok közötti megfeleltetés alapján.

Az értékelés eredményét az 5-3. táblázatban, az 5-2. ábrán és az 5-3. térkép mellékletben mutatjuk be.
5. fejezet A vizek állapotának minősítése

5-3. táblázat: A támogató fizikai és kémiai jellemzők szerint végzett vízminősítés összesített eredménye

<table>
<thead>
<tr>
<th>Osztály</th>
<th>Szervesanyagok, oxigén háztartás</th>
<th>Tápanyag-készlet</th>
<th>Sótartalom</th>
<th>Savasodásáli állapot</th>
<th>Fizikai-kémiai minősítés</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kiváló</td>
<td>7</td>
<td>6</td>
<td>6</td>
<td>7</td>
<td>4</td>
</tr>
<tr>
<td>Jó</td>
<td>15</td>
<td>15</td>
<td>3</td>
<td>0</td>
<td>14</td>
</tr>
<tr>
<td>Mérsékelt</td>
<td>5</td>
<td>5</td>
<td>2</td>
<td>0</td>
<td>8</td>
</tr>
<tr>
<td>Gyenge</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Rossz</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Nincs adat</td>
<td>5</td>
<td>5</td>
<td>21</td>
<td>25</td>
<td>5</td>
</tr>
<tr>
<td>Összes vizsgált víztest</td>
<td>32</td>
<td>32</td>
<td>32</td>
<td>32</td>
<td>32</td>
</tr>
</tbody>
</table>

5-2. ábra: Víztestek számának megoszlása a fizikai-kémiai minősítésre kapott osztályba sorolás szerint

A csoport paraméterek közül legrosszabb a helyzet a növényi tápanyagok esetében. A szennyezések forrásainak feltárására irányuló elemzés azt mutatja, hogy 7 víztesten közvetlen szennyvízbevezetés, döntő többségében diffúz szennyezés okoz tápanyag (elsősorban foszfor) és szervesanyag problémát. Előbbi elsősorban a dombvidéki, eróziós talajveszteség szempontjából érzékeny területekre koncentrálódik. Kedvezőtlenül befolyásolják a víztestek vízminőségét a halastavakból leeresztett, tápanyagban és szervesanyagban gazdag vizek. Emellett jellemző egyéb, pontoszerű szennyezések hatása (állattartó telepek, belterület, hulladék lerakók, illegális szennyvízbevezetések).
5.1.3 Hidromorfológiai állapot értékelése

A hidrológiai és morfológiai viszonyok fontos meghatározói az ökoszisztémák működésének. Az ökológiai minősítés új, támogató elemei. Az integrált ökológiai minősítést csak az befolyásolja, hogy az állapot kiváló-e vagy sem, de az intézkedések tervezése szempontjából fontos, hogy a biológiai minősítéshez hasonló 5-osztályos skálán a víztest hol helyezkedik el. A hidromorfológiai állapot a víztestek hasonlóságnak egyik fő mutatója, és olyan víztestek esetén is lehetővé teszi az intézkedések tervezését, ahol nem állt rendelkezésre megbízható adat a minősítésre. A hidromorfológiai minősítés a kis és közepes vízfolyásokra mintegy 20 paraméteren, a nagy folyókra ennél valamivel kevesebben paraméteren alapul. A jó állapot követelményeit az élővilággal való szoros kapcsolat határozza meg: akkor beszélhetünk a hidromorfológiai elemek jó állapotáról, ha az összhangban van az 5.1.1 pontban bemutatott biológiai jellemzők jó állapotával. A jó állapothoz tartozó kritériumok biológiai szemléletű meghatározása a makrofiták, a makrogerinctelenek és a halak szempontjából a paraméterek jól állapotától való eltéréseinek összesítése alapján végezhető el.

Az 5.4. táblázat mutatja a minősítés eredményeit, a vízfolyások természeti típusai és az emberi használat jellege szerinti bontásban, az 5.3. ábra pedig segít láthatóvá tenni a markáns jellemzőket:

5.4. táblázat: Vízfolyások hidromorfológiai minősítésének eredményei kategóriák szerinti felbontásban

<table>
<thead>
<tr>
<th>Állapot</th>
<th>Természetes vízfolyások</th>
<th>Erősen módosított vízfolyások</th>
<th>Mesterséges vízfolyások</th>
<th>Összesen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kiváló</td>
<td>11</td>
<td>17</td>
<td>28</td>
<td></td>
</tr>
<tr>
<td>Jó</td>
<td>1</td>
<td>3</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Mérsékelt</td>
<td>11</td>
<td>17</td>
<td>28</td>
<td></td>
</tr>
<tr>
<td>Gyenge</td>
<td>1</td>
<td>3</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Rossz</td>
<td>1</td>
<td>3</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Nincs adat</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Összes víztest</td>
<td>12</td>
<td>20</td>
<td>32</td>
<td></td>
</tr>
</tbody>
</table>

* A mesterséges víztestek esetében nem adathiányról, inkább módszertani hiányosságokról van szó.
A vizek állapotának minősítése – 60 –

5-4. térkép melléklet mutatja valamennyi víztestre a hidromorfológiai minősítés eredményeit.

5.1.3.1 Természetes víztestek
Az alegység területén természetes jó állapotú vízfolyás víztest nem található.
A természetes vízfolyások zöme (egy gyenge kivételével) az ún. mérsékelt osztályba esik: vagyis az eltérés az általánosan megkívánt célállapototól nem jelentő, tehát reális lehet annak rövid vagy középtávon való elérése.
Természetes nagy folyó az alegység területén nem található.

5.1.3.2 Erősen módosított víztestek
Az eredmények világosan jelzik, hogy az erősen módosított víztestek esetében is szükség van állapotjavító intézkedésekre, hiszen jelenleg egyetlen erősen módosított víztest sem éri el a jó ökológiai potenciált.

5.1.3.3 Mesterséges víztestek
Mesterséges vízfolyás víztest az alegység területén nincs.
5.1.4 Az ökológiai állapot integrált minősítése vízfolyásokra

A nem teljes körű monitoring miatt egy-egy víztesten eltérő számú minőségi elem állt rendelkezésre az integrált minősítéshez. Hidromorfológiai minősítés a természetes vízfolyások mindegyikére készült. Az általános kémiai jellemzők is rendelkezésre álltak a vízfolyások több mint 80 %-ára. Elvben e két minősítési elemmel az emberi hatások jellemezhetők. Ugyanakkor a VKI fontos alapelve, hogy a biológiai jellemzőket előtérbe helyezi a hidromorfológiai és a kémiai mutatókkal szemben. Helyettesítésre csak kivételes esetben, hasonló típusok és azonos problémák esetében ad lehetőséget. Annak érdekében, hogy a kevés információból adódó torzítások kiküszöbölik legyenek, azok a víztestek nem kaptak minősítést, melyeknél nem állt rendelkezésre legalább egy-egy minősítő elem, amelyek a két legfontosabb emberi hatást jelzik: a szennyezés jellemzésére a fiziko-kémiai vagy a fitobentosz minősítés valamelyikéhez, a hidromorfológiai hatások indikátoraként pedig a makrofita, a makroszkópikus gerinctelenek vagy a halak közül legalább az egyik.

A fenti megfontolásokkal az alegység területén összesen 29 víztestre (91%) áll rendelkezésre minősítés. Az ökológiai állapot osztálya sorolását az 5-1. térkép mellékleten, valamint az 5-1. mellékletben víztestenként mutatjuk be.

5-5. táblázat: Vízfolyások integrált ökológiai minősítésének eredményei a különböző kategóriákban

<table>
<thead>
<tr>
<th>Állapot</th>
<th>Természetes vízfolyás víztestek</th>
<th>Erősen módosított vízfolyás víztestek</th>
<th>Mesterséges vízfolyás víztestek</th>
<th>Összesen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kiváló</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jó</td>
<td>3</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Mérsékelt</td>
<td>4</td>
<td>9</td>
<td></td>
<td>13</td>
</tr>
<tr>
<td>Gyenge</td>
<td>5</td>
<td>7</td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>Rossz</td>
<td>1</td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Nincs adat</td>
<td>2</td>
<td>1</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Összes víztest</td>
<td>12</td>
<td>20</td>
<td></td>
<td>32</td>
</tr>
</tbody>
</table>

Az 5-4. ábra a víztestek kategória szerinti megoszlásában mutatja az osztálya sorolás eredményét.
5.1.4.1 Természetes víztestek
Kiváló és jó állapotú vízfolyás egy sem lett, mérsékelt állapotot pedig mindössze 4 ért el. Ez azt jelenti, hogy a természetes vízfolyások 100%-a intézkedést igényel!

5.1.4.2 Erősen módosított víztestek
Jó állapotú vízfolyás 3 lett, 9 víztest lett mérsékelt állapotú, 7 víztest pedig gyenge állapotú.

5.1.4.3 Mesterséges víztestek
Mesterséges víztest az alegység területén nincs.

5.1.5 Kémiai állapot veszélyes anyagok szerinti minősítése
Az Európai Parlament és a Tanács irányelveket dolgozott ki a vízpolitika területén a környezetminőségi előírásokról, a 82/176/EGK, 83/513/EGK, 84/156/EGK, 84/491/EGK és 86/280/EGK irányelve módosításáról és azt követő hatályon kívül helyezéséről, valamint a 2000/60/EGK irányelve módosításáról. Ez az irányelve tartalmazza az elsőbbségi anyagokra és bizonyos egyéb szennyezőanyagokra vonatkozó környezetminőségi előírásokat (EQS) a felszíni vizekre. Az irányelvben megadott határértékek kötelező érvényűnek tekinthetők. Az „Egyezmény a Duna védelmére és fenntartható használatára irányuló együttműködésről (Szófiai Konvenció)” keretében a dunai országok megállapodtak, hogy a Duna-medencében a VKI elsőbbségi anyagokon kívül releváns veszélyes anyag a króm, cink, arzén, réz, cianid. Ezekre a fémekre az EU nem ad meg felszíni vízminősítési határértékeket, és a Duna Védelmi Bizottság (ICPDR) is
VÍZGYŰJTŐ-GAZDÁLKODÁSI TERV
3-3 Fekete-víz vízgyűjtő

csak célértékeket alkalmaz a Duna-medencei nemzetközi vízminőségi monitoring rendszer eredményeinek feldolgozásához. A hazai vizekre a korábban már alkalmazott, a „Felszíni vizek minősége, minőségi jellemzők és minősítés” MSZ 12749 szabvány II. vízminőségi osztályához tartozó határértékek tekinthetők mértékadónak az oldott króm, cink, arzén, réz 90 %-os tartósságú koncentrációi alapján történő minősítéshez. A határértékek felülvizsgálata a következő tervezési ciklusban javasolt. Az elsőbbségi anyagokra vonatkozó határértékeket az országos terv függeleke tartalmazza.

A kémiai állapot értékelése az EQS határok alapján, két csoportban történt, az elsőbbségi anyagra és a minősítésbe bevont további négy fémre.

Működési területünkön az alegységhez nem tartozik olyan víztest, amely az elsőbbségi anyagok bevezetése, vagy a minősítésbe bevont négy fém miatt nem jó minősítésű.

5.2 Állóvíz víztestek ökológiai állapotának minősítése

Az állóvizek jellemzése a vízfolyásokéhoz hasonlóan, a VKI V. mellékletében meghatározott állapotjellemzők szerint történt, az értékelés azonban nem teljes körű az adathiány és módszertani hiányosságok miatt. Az eredmények térképi megjelenítése a vízfolyásokkal együtt készült (5-1. – 5-4. térkép mellékletek), a víztestenkénti minősítést az 5-1. mellékklet tartalmazza.

5.2.1 Biológiai állapot értékelése

Az állóvizekre a fitoplankton, a fitobentosz és a makrofiták előlény együttesekre készült típus specifikus, ötosztályos (ún. EQR-alapú) biológiai minősítő rendszer. A makroszkópikus gerincetlenek esetében az elégtelen adatok és a minősítési rendszerek nemzetközi kidolgozatlansága az oka a minősítő rendszer hiányának. Az állóvizek halközösség alapú minősítése azokra a víztestekre volt lehetséges, amelyekre korábbi kutatások eredményeként volt adat. Mivel kidolgozott minősítési rendszer nem készült, ezt csak szakértői becslésnek lehet tekinteni. Ezért a halfauna alapján történt minősítés eredményét - mivel a módszer nem transzparens - az integrált minősítésben nem számíthatjuk bele.

A mesterséges és erősen módosított állóvizek valamelyik természetes tó típushoz való hasonlóságuk (tározók, egyes kavicsbánya tavak), vagy pedig funkciójuk (jelenlegi vízhasználat) alapján minősíthetők. Fürdővíz, öntővíz és halászati hasznosítás esetén utóbbi, tehát a funkció alapján kell az ökológiai potenciált meghatározni. A fürdővíz készült tavak (pl. bányatavak) esetében a fürdővíz követelmények mellett a támogató kémia rá a hasonlóság szerinti kritériumok is teljesítenek (pl. oligotrofikus állapot, mint referencia bánya tavakra). Több vízhasználat együttes fennállása esetén a szigorúbb kritérium a mértékadó. Természetvédelmi kezelés alatt álló mesteréges tavaknál a kiváló potenciált a hasonlóság alapján vehetjük figyelembe (holtágakra, kis tavakra vonatkozó referencia állapot). A biológiai adatok tekintetében a mesterséges és erősen módosított állóvizekre gyakorlatilag teljes az adathiány, így sem a módszerek kidolgozására, sem a minősítésre nem került sor.

5.2.1.1 Természetes víztestek

Az alegység területén természetes állóvíz víztest nincs.

5.2.1.2 Erősen módosított víztestek

Erősen módosított állóvíz az alegység területén nincs.
5. fejezet A vizek állapotának minősítése – 64 –

5.2.1.3 Mesterséges víztestek
A mesterséges állóvizek mindegyike (2 db) halastó, melyek potenciálját a hasznosítás határozza meg. Ezek állapotát biológiai adatok hiányában nem tudtuk értékelni.

5.2.2 Fiziko-kémiai állapot értékelése
Az állóvizek minősítéséhez a folyóvizeknél használt fizikai-kémiai jellemzőkön kívül az átlátszóság, mint fizikai jellemző bevonását javasolja a VKI. Tekintettel arra, hogy állóvizeink túlnyomó többsége sekély, azokat a szél keltette áramlások fenékig felkavarni képesek, ez a paraméter nem releváns.

5.2.2.1 Természetes víztestek
Az alegység területén természetes állóvíz víztest nincs.

5.2.2.2 Erősen módosított víztestek
Erősen módosított állóvíz az alegység területén nincs.

5.2.2.3 Mesterséges víztestek
A két mesterséges víztestet nem minősítettük, de feltételezük, hogy az intenzív művelés alatt álló halastavak vízminősége a magasan fenntartott tápanyag szint miatt az alvíz terhelése miatt (leeresztéskor) potenciális szennyezőforrást jelent.

5.2.3 Hidromorfológiai állapot értékelése
Állóvizekre jelenleg nem áll rendelkezésre a vízfolyásokéhoz hasonló ötosztályos minősítési módszer. Az egyes állóvíz típusok hidromorfológiai referencia viszonyait, illetve a jellemzéshez felhasználható paramétereket meghatározták, de az adatok, illetve a jó állapot biológiai szemlélettől megállapított követelményeinek hiánya miatt a minősítési rendszert nem lehetett kidolgozni.

5.2.4 Az ökológiai állapot integrált minősítése állóvizekre
Az integrált minősítés menete a vízfolyásoknál ismertetett módszerrel azonos. Mivel a tavaknál a makrogerinctelenek eleve hiányoznak a minősítésből, és a fitoplanktonra is kevés tóra állt rendelkezésre adat, az integrált minősítéshez minden minősítési eredmény „számított” (azaz a tó minden esetben kapott osztály besorolást, ha legalább egy minősítési elemre volt információ). Az összesített eredményeket az 5-6. táblázat mutatja. A víztestenkénti eredmények megtalálhatók az 5-1. mellékletben.
5.2.4.1 Természetes víztestek
Az alegység területén természetes állóvíz víztest nincs.

5.2.4.2 Erősen módosított víztestek
Az alegység területén erősen módosított állóvíz víztest nincs.

5.2.4.3 Mesterséges víztestek
A halastavakon vizsgálatok nem történtek, ezért azokat nem minősítettük.

5.2.5 Kémiai állapot veszélyes anyagok szerinti minősítése
A veszélyes anyagok esetében nincs különbség az értékelési módszerben a folyóvizek és az állóvizek között. A környezetminőségi EQS határok, valamint a további 4 fémre megállapított határértékek minden víztípusra, így az állóvizekre is érvényesek, függetlenül azok kategóriájától. Az alegység területén egyetlen állóvízre sem készült a minősítéshez elegendő adatszámmal felmérés a veszélyes anyagokra vonatkozóan.

5.3 Felszín alatti víztestek állapotának minősítése

5.3.1 A mennyiségi állapot értékelése és minősítése
A mennyiségi állapotra vonatkozó négy vizsgálati módszer (teszt) különböző szempontból vizsgálja a vízkivételek felszín alatti vízekre gyakorolt hatását:

- A süllyedési teszt azt ellenőrzi, hogy a vízkivételek környezetében nem süllyed-e tartósan a vízszint, vagyis a vízkivétel nem-haladja-e meg az utánpótlódó vízmennyiséget.
- A vízmérleg tesztnak nevezett módszer azt ellenőrzi, hogy a közvetlen vízkivételek (kutakkal) és a közvetett vízelvonások (vízfolyások mesterséges megcsapoló hatása, bányatavak párolgása) nem ellentétesek-e a terület tájokológiai céljaival. Ilyen módon azok a víztestek válogathatók ki, ahol a vízkivételek hatására kialakuló vízhiáztartási viszonyok nem biztosítják a felszín alatti vizektől függő ökoszisztémák vízigényét.
• A felszín alatti vízektől függő ökoszisztémákra vonatkozó teszt azt ellenőrzi, hogy vannak-e a víztesten belül olyan jelentős, károsodott ökoszisztémák, amelyek károsodását a felszín alatti vízhasználatok (kutak, megcsapolás) okozzák.
• Az un. intruziós teszt pedig azt ellenőrzi, hogy a felszín alatti vízhasználatok nem indítanak-e el káros vízminőségi változásokat.

Bármilyen teszt pozitív eredménye elegendő ahhoz, hogy a víztest gyenge állapotú legyen. A vízsgálati módszerek részletesebb leírását az országos terv tartalmazza.

Süllyedési teszt
A megfigyelő kutak észlelési idősorait elemzve megállapítható, hogy a felszín alatti víztestekre kiterjedő léptékben sehol nem tapasztalható süllyedési tendencia.
Vannak olyan víztestek, ahol ugyan víztest szinten jelentős kiterjedésű (területének nagyobb, mint 20%-ára kiterjedő), egybefüggő süllyedési tendenciáról nem beszélhetünk, de jellemzőek az ismétlődően megjelenő lokális süllyedések. Ez a jelenség jelzi, hogy a víztest vízhasználatai nem fenntarthatóak, ezért ezeket a víztesteket gyenge állapotúnak kell tekinteni, ahol a jelenlegi helyzet javítása intézkedéseket igényel.

Egyes vízkivételek környezetében tartós, de lokális süllyedési tendencia jelentkezhet. Ezek, lokális jellegük miatt, nem okozzák a víztest gyenge állapotát, de említésre érdemesek, kialakulóban lévő problémára utalhatnak.
Az alegység területén ilyen lokális problémák nem kimutathatók.

A felszín alatti vízkészlet hasznosulása a vízmérleg teszt alapján
Ahogy a bevezetőben szerepelt, ez a teszt azt vizsgálja, hogy nincs-e konfliktus az emberi igényeket kielégítő vízhasználatok és az ökoszisztémák célállapotához tartozó vízigények között. Ilyen értelemben nem egy nagyományos vízmérlegről van szó, mert az ökoszisztémák vízfogyasztása nem a jelenlegi, hanem a célállapot szerint szerepel a számításokban. Az ökoszisztémák célállapota ökológiai, gazdasági és társadalmi szempontok együttes figyelembevételével határozható meg.
A természetes utánpótlásból biztosítani kell a felszín alatti vízktől függő ökoszisztémák (FAVÖKO-k) célállapot szerinti vízigényt, és a maradék hasznosítható a társadalom vízszükségleteinek kielégítésére. A felszín alatti vízgyűjtő jó mennyiségi állapotának kritériuma, hogy a közvetett és közvetlen vízkivételek mennyisége ne haladj meg a hasznosítható vízkészletet.
Az utánpótlás és a FAVÖKOK vízigénye különbségeként meghatározott hasznosítható készletek és a vízkivételeknek víztestenként, illetve víztest csoportokként számolt értékeit az 5-2 függelék mutatja be (a víztestek közötti vízforgalom elemei részletes, modellezésen alapuló számítások nélkül bizonytalansul becsülhető, illetve függene a vízhasználatoktól, ezért a vízmérleg számítások általában egy felszín alatti vízgyűjtőt alkotó víztestek csoportjaira készültek – az eredmény is valamennyi, a csoporthoz tartozó víztestre érvényes). A hasznosítható vízkészlet és a vízkivételek összehasonlítása alapján három kategóriát lehet felállítani.

a.) Nem jó állapotú felszín alatti víztestek, ahol a közvetett és közvetlen vízkivétel nagyobb, mint a hasznosítható vízkészlet
A vízkivétel felszín alatti víztestekből nem haladj meg a hasznosítható vízkészletet.
VÍZGYŰJTŐ-GAZDÁLKODÁSI TERV
3-3 Fekete-víz vízgyűjtő

b.) Felszín alatti víztestek, ahol a közvetett és közvetlen vízkivétel közel egyenlő a hasznosítható vízkészlettel

A felszín alatti víztestek újabb csoportját képezik azok a víztestek, amelyeknél a hasznosítható vízkészlet és a vízkivétel eltérése kisebb, mint ±10%. A különbség kisebb, mint a számítás bizonytalansága, és sem a víztestek állapota, sem az intézkedések nem dönthetők el egyértelműen. A bizonytalan helyzet kétféleképpen szüntethető meg: (1) a gazdasági, társadalmi szempontok alapján a végső tervezési fázisban a FAVÖKO-k célállapota változik, egyértelműen nő vagy csökken a vízigény; (2) a terv végrehajtásának első intézkedése között szerepelnek azok a kiegészítő elemzések (feltárás, modelllezés), amelyek lehetővé teszik a pontosabb számításokat. (Az ezekre a víztestekre vonatkozó intézkedések a bizonytalanságnak megfelelően az elővigyázatosságot szolgálták).

Ebbe a kategóriába felszín alatti víztest az alegységen belül nem tartozik.

c.) Jó állapotú felszín alatti víztestek, ahol a közvetett és közvetlen vízkivétel kisebb, mint a hasznosítható vízkészlet

Az alegységhez tartozó víztestek jó állapotúak.

A felszín alatti víztől függő ökoszisztémák állapota

A területre jellemző felszín alatti vízek közül függő ökoszisztémákat (FAVÖKO-kat) a vízmérleg tesztel kapcsolatban már bemutattuk. A vízmérleg tesztben a FAVÖKO-k víztest szintű (tájékozatalapú szempontok alapján megállapított) vízigénye jelent meg. A víztestet azonban akkor is gyenge állapotúnak kell minősíteni, ha a vízhasználatok egy-egy jelentős FAVÖKO károsodását okozzák. Ez akkor fordul elő, ha vízkivétel miatt csökken egy jelentős forrás hozama, kisvízi időszakban nem jut egyszerűen felszín alatti víz a mederbe, a talajvízszint csökkenése miatt szárazodik egy vizes élőhely, vagy megváltozik a szárazföldi ökoszisztéma fajosszététele (a szárazságot jobban kedvelő lényfajok terjednek el).

A probléma főként a sekély porózus víztesteket érinti és kisebb mértékben karszt víztestekre vonatkozik, de a vizsgálatok szerint az alegység területén sem gyenge állapotú, sem olyan víztest nem található, mely esetén valósznú FAVÖKO károsodásról beszélhetünk. (A bizonytalanság egyrészt a károsodás mértékének és jelentőségének megítélésben van, másrészt helyenként nem egyértelmű a felszín alatti víztől való függés, illetve nehezen szétválasztható az éghajlati és az emberi hatás aránya).

A felszín alatti víz minőségének változása vízkivételek hatására

A felszín alatti vízből történő víztermelés hatására módosulhat a vízmérésgödény. A vízmérleg teszteil körülbelül az eredeti mérték alatt van a vízminőség. Az országos mértékegységszerű elemzések alapján az eredmények szerint az éghajlati és az emberi hatás aránya növekszik, de nincs jelentős változás.

A felszín alatti víztestek mennyiségi állapotának összefoglalása

Az alegységen található 13 víztest közül mindegyik jó állapotú.
5-7. táblázat: Felszín alatti víztestek mennyiségi állapotának összegzése

<table>
<thead>
<tr>
<th>A víztest neve</th>
<th>Víztest jelle</th>
<th>Vízmérleg teszt</th>
<th>Süllyedési teszt</th>
<th>Felszínű vízre vonatkozó teszt</th>
<th>Szárazföldi FÁVÖKO-ra vonatkozó teszt</th>
<th>Aranymintás viszonyok hatása a vízménységre</th>
<th>Víztest állapota</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Hasznosítható vízkészlet</td>
<td>Vízkivételek</td>
<td>Eredmény</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>em³/nap</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Délnyugat-Dunántúl</td>
<td>pt.3.1</td>
<td>45</td>
<td>9</td>
<td>jö</td>
<td>jö</td>
<td>jö</td>
<td>jö</td>
</tr>
<tr>
<td>Feketevíz-vízgyűjtő</td>
<td>sp.3.3.1</td>
<td>1</td>
<td>jö</td>
<td>jö</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dráva-völgy Barcs alatt</td>
<td>sp.3.3.2</td>
<td>3</td>
<td>jö</td>
<td>jö</td>
<td></td>
<td></td>
<td>jö</td>
</tr>
<tr>
<td>Feketevíz - vízgyűjtő</td>
<td>p.3.3.1</td>
<td>32</td>
<td>jö</td>
<td>jö</td>
<td></td>
<td></td>
<td>jö</td>
</tr>
<tr>
<td>Dráva-völgy Barcs alatt</td>
<td>p.3.3.2</td>
<td>3</td>
<td>jö</td>
<td>jö</td>
<td></td>
<td></td>
<td>jö</td>
</tr>
<tr>
<td>Villányi-hegység</td>
<td>sh.3.1</td>
<td>0</td>
<td>jö</td>
<td>jö</td>
<td></td>
<td></td>
<td>jö</td>
</tr>
<tr>
<td>Villányi-hegység</td>
<td>h.3.1</td>
<td>0</td>
<td>jö</td>
<td>jö</td>
<td></td>
<td></td>
<td>jö</td>
</tr>
<tr>
<td>Villányi-hegység - karszt</td>
<td>k.3.1</td>
<td>3</td>
<td>jö</td>
<td>jö</td>
<td></td>
<td></td>
<td>jö</td>
</tr>
<tr>
<td>Harkány és környezete termálkarszt</td>
<td>kt.3.1</td>
<td>5</td>
<td>jö</td>
<td>jö</td>
<td></td>
<td></td>
<td>jö</td>
</tr>
<tr>
<td>Mecsek</td>
<td>sh.1.12</td>
<td>1</td>
<td>jö</td>
<td>jö</td>
<td></td>
<td></td>
<td>jö</td>
</tr>
<tr>
<td>Mecsek</td>
<td>h.1.12</td>
<td>5</td>
<td>jö</td>
<td>jö</td>
<td></td>
<td></td>
<td>jö</td>
</tr>
<tr>
<td>Mecsek - karszt</td>
<td>k.1.8</td>
<td>2</td>
<td>jö</td>
<td>jö</td>
<td></td>
<td></td>
<td>jö</td>
</tr>
<tr>
<td>Mecsek - termálkarszt</td>
<td>kt.1.8</td>
<td>1</td>
<td>jö</td>
<td>jö</td>
<td></td>
<td></td>
<td>jö</td>
</tr>
</tbody>
</table>

5.3.2 Kémiai állapot értékelése és minősítése

A kémiai állapotra vonatkozó tesztek alapvető célja a felszín alatti vízhasználatokat, illetve a felszín alatti vízektől függő ökoszisztémákat veszélyeztett szennyezések feltárása, a szennyezett területek meghatározása és az esetleges időbeli vízminőségi változások értékelése.

A minősítések végrehajtásához a következő elemzésekre, illetve vizsgálatokra (tesztekre) van szükség:

- Az egyes szennyezőanyagokra vonatkozó, víztest típusonként változó ún. küszöbértékek meghatározása
- Az egyes monitoring kutakban észlelt túllépések vízhasználatokra és ökoszisztémákra való veszélyességének ellenőrzése
- Diffúz szennyeződések kiterjedésének (elterjedésének) meghatározása
- Felszínű víztestek kémiai állapotát veszélyeztethető felszín alatti víztestek azonosítása
- Felszín alatti vizek kémiai állapota miatt szennyeződött vizes élőhelyek és szárazföldi ökoszisztémák azonosítása
Szennyezési trendek elemzése a kijelölt VKI monitoring kutak alapján

A vizsgálati módszerek részletes bemutatását az országos terv, illetve annak mellékletei tartalmazzák.

Háttérvédelmek és küszöbértékek meghatározása

A küszöbérték az a szennyezőanyag koncentráció, amely esetén fennáll a veszélye az ún. receptorok szennyeződésének. Függ a receptorra vonatkozó határértéktől (ívóvíz határérték vagy ökológiai határérték), vagy ontózásra vonatkozó határérték), valamint a mérési pont és a receptor közötti keveredési és lebomlás folyamatoktól. Európai Unió szinten két komponensre (nitrát és növényvédő szerek) rögzítettek küszöbértéket, a többi vizsgálandó komponensre ezt a tagállamoknak kell megállapítania. Magyarországon ez a következő komponenseket jelenti: NH₃, a vezetőképesség, Cl, SO₄, Cd, Pb, Hg, szerves szennyezők (AOX, TOC, tri- és tetraklóretilén), illetve a nitrát esetében a felszíni vizek ökoszisztémái alapján megállapítandó, az EU-szinten előírt szigorúbb küszöbérték. Amennyiben a víztestre megállapított háttér-koncentráció nagyobb, mint a fentiek szerint meghatározott küszöbérték, akkor a háttérértéket kell alkalmazni.

Az egyes víztestekre vonatkozó háttérértékeket és küszöbértékeket az 5-3. melléklet tartalmazza.

Túllépések veszélyességének ellenőrzése

Az egyes monitoring pontokon észlelt túllépések veszélyességét három szempont szerint kell ellenőrizni:

- ha termelőkút, akkor a veszélyeztetettség attól függ, hogy a túllépés rendszeres-e, illetve igényl-e a kezelési technológia megváltoztatását;
- ha vizbázis megfigyelőkútja, akkor a többi megfigyelőkút figyelembevételével várható-e valamely termelőkút mértékű elszennyezése, hogy az technológia-váltáshoz vezetne;
- egyéb VKI monitoring kutak esetén azt kell ellenőrizni, hogy a túllépés okozhatja-e valamely ökoszisztéma károsodását (ez az ellenőrzés a másik oldalról is megtörténik: azaz szennyezett felszíni víz vagy károsodott élőhely oka lehet-e a felszín alatti víz szennyezettsége).

A termelőkutakra, illetve vízbázisokra vonatkozó vizsgálatok eredményeit az ivóvízbázisokkal foglalkozó 5.4.1. fejezetben ismertetjük.

A vizbázisok védőidomain kívül található kutak esetében célszerű különböztetni a pontoszerű és a difúz jellegű szennyezéseket a szennyeződés terjedésében meglévő jelentős különbségek miatt (a pontoszerű szennyezések koncentrációját jelentős mértékben csökkentheti a keveredés - a receptor tápláló víznek csak egy részét teszik ki a szennyezett vizek). Általában pontoszerű szennyezőforrásokból származó szennyezőanyagok esetében (szulfát, klorid, higany, kadmium, ólom, továbbá TOC, AOX, diklór-, triklór- és tetraklóretilén) ugyan több objektum mérési adata küszöbérték főlőti koncentrációt mutatott (részletes információk az országos tervhez kapcsolódó háttértervalmányban találhatók), de a részletes értékelés eredményeként megállapítható volt, hogy:

- ezek oka vagy mintavételei-, mérési-, illetve adatkezelési problémából, vagy külsőkezelési hibából adódott, tehát nem tényleges túllépésről van szó;

6 az ember az ivóvíz kivétel és az elfogyasztott élelmiszer révén, a felszíni vizek vízi és vizes élőhelyei, valamint a szárazföldi növényzet a felszín alatti víz táplálás miatt
• vagy a szennyezés - mértéke és pontszerű jellege miatt - nem veszélyeztet receptorokat.

A diffúz jellegű nitrát- és ammónium-szennyezésekkel a következő részben foglalkozunk.

Diffúz nitrát- és ammónium-szennyeződések kiterjedésének (elterjedésének) meghatározása

A nitrát-, az ammónium-szennyeződések egyes víztesteken belüli arányainak meghatározása a VKI monitoring kutak adatain túlmenően az adatbázisban szereplő összes 2000 utáni mérési adatbázis alapján történt.

A felszín alatti vizek nitrát szennyezettsége erősen függ a földhasználattól, ezért a sekély víztestek területén lévő kutak/forrásokat a környezetükben történő földhasználat szerint négy csoportra csoportosítjuk: (1) települések belterülete és üdülőterületek, (2) mezőgazdasági területek (szántóföldek, szőlők, gyümölcsösök, vegyes mezőgazdasági területek), (3) erdő, rét, legelő, (4) ipari területek. Területhasználatosan megállapítható a kőszöbérték felett szennyezett kutak aránya. A víztestenkénti nitrát-szennyezettségi arány pedig az egyes területhasználatokra vonatkozó szennyezettségi arányok súlyozott átlagát számítjuk.

Az 5-8. táblázat az alegységen található felszínnel érintkező víztestek esetében mutatja a szennyezettség arány jellemzőit.

5-8. táblázat: A nitrát-szennyezettség jellemzői

<table>
<thead>
<tr>
<th>Felszínbeli érintkező víztestek</th>
<th>A teljes víztest nitrát szennyezettségi aránya %</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>jele</td>
</tr>
<tr>
<td>h.1.12</td>
<td>Mecsek</td>
</tr>
<tr>
<td>k.1.8</td>
<td>Mecsek - karszt</td>
</tr>
<tr>
<td>k.3.1</td>
<td>Villányi-hegység-karszt</td>
</tr>
<tr>
<td>sh.1.12</td>
<td>Mecsek</td>
</tr>
<tr>
<td>h.3.1</td>
<td>Villányi-hegység</td>
</tr>
<tr>
<td>sh.3.1</td>
<td>Villányi-hegység</td>
</tr>
<tr>
<td>sp.3.3.1</td>
<td>Feketevíz-vízgyűjtő</td>
</tr>
<tr>
<td>sp.3.3.2</td>
<td>Dráva-völgy Barcs alatt</td>
</tr>
</tbody>
</table>
A táblázatban szereplő 8 db víztestből 6 db víztest sekély-porózus vagy sekély hegyvidéki vagy karszt, melyek sérülékenyen.

A nitrát-szennyezések területi elhelyezkedése azt jelzi, hogy a Dunántúl nagy részén ezek a víztestek szennyezettebbek, mint az ország többi területein, bár az összesített arány összesen 1 víztestnél haladja meg a 20%-ot.

Az ammónium felszín alatti víztestek elterjedése elsősorban természetes (földtani) eredetű. Emberi tevékenységből (mezőgazdaság, szennyvízszikkasztás) származó ammónium csak kis szintű sekély kútban fordul elő küszöbértéket meghaladó koncentrációban, a túllépések sehol nem terjednek ki a víztest területénak 20%-ára.

Felszín alatti víztestek kémiai állapotát veszélyeztetető felszín alatti víztestek azonosítása

Ez az értékelés a felszín alatti víztestek kémiai állapotértékelésére épül. Ellenőrizni kell, hogy olyan felszín alatti víztestek esetében, ahol az egyéb szennyezőforrásokkal a „nem jó” állapot nem indokolható, a szennyezett felszín alatti víz lehet-e a probléma oká. A gyakorlatban ez a vizsgálat a nitrát-tartalomra egyszerűsödött.

Az alegység esetében összesen 1 felszín alatti víztestnél merült fel a felszín alatti víz okozta szennyezés lehetősége - ahol a nitrát szennyezettség aránya összesítve 20 %, de tényleges szennyezés (az 5-10. táblázat alapján) nem volt kimutatható.

5-9. táblázat: Felszín alatti vizek által veszélyeztetett felszín alatti víztestek

<table>
<thead>
<tr>
<th>Alegység</th>
<th>Felszín alatti víztest VOR</th>
<th>Felszín alatti víztest (FEV) neve</th>
<th>Felszín alatti víztest azonosító</th>
<th>Felszín alatti víztest neve</th>
</tr>
</thead>
<tbody>
<tr>
<td>3-3</td>
<td>AEP877</td>
<td>Pécsi-víz és mellékvízfolyásai</td>
<td>sp.3.3.1</td>
<td>Feketevíz-vízgyűjtő</td>
</tr>
</tbody>
</table>

Szennyezési trendek elemzése VKI monitoring kutak alapján

Szennyezési trendek elemzése a kijelölt VKI monitoring kutak nitrát, ammónium, szulfát és vezetőképesség adataira épült. Az EU módszertani javaslatok szerint elvégzett adatszűrés eredményeként országosan 27 víztest minősült alkalmaznak a vízkémiai trendek statisztikai feldolgozására. Ezek között az alegységen 1 víztest (AIQ518 Dráva-völgy Barcs alatt) található, melyen azonban nem lehetett növekvő trendet kimutatni.

A felszín alatti víztestek kémiai állapotának összefoglalása

Az alegység területéhez kapcsolódó víztestekre a kémiai állapot értékelés jellemzőit az 5-10. táblázatban foglaltuk össze. Az 5-10. – 5-13. térkép mellékletek térképi formában mutatják be az eredményeket.

Összességében megállapítható, hogy a 13 db felszín alatti víztest közül 5 db gyenge kémiai állapotú, és ezekben túlmenően a trendvízsgálat alapján nincs kockázatos állapotú víztest.
Jelentőségük miatt kiemeljük az ivóvízbázisok veszélyeztetettségét, amely 4 víztest esetén fordul elő. (Hivatkozás az 5.4.1. fejezetre.) A gyenge állapot okai között szerepel a diffúz eredetű nitrát-szennyezés nagy aránya, valamint a mezőgazdasági és a települési eredetű szennyeződés. A nagy szennyezettség esetében főként az előbbi, hiszen a települések területi arányuk miatt legfeljebb csak hozzájárulnak ehhez.

A karszt víztestek közül 1 gyenge kémiai állapotú. Ennek oka a diffúz eredetű nitrát-szennyezettség.

A porózus víztestek közül egyedül a Fekete-víz vízgyűjtőjének térsége tekinthető gyenge állapotúnak a Pécs-Tortyogó és a Bogádmindszent ivóvízbázisok veszélyeztetettsége miatt.

A hegyvidéki víztestek közül a Mecsek (h.1.12 és sh.1.12) gyenge állapotú.

A termál karszt és a porózus termál víztestek kémiai állapota mindenütt jó.

5-10. táblázat: Felszín alatti víztestek kémiai állapotának minősítése

<table>
<thead>
<tr>
<th>Víztest</th>
<th>Szennyezett termelőkút</th>
<th>Szennyezett ivóvízbázis védőterület/ védőidom</th>
<th>Diffúz szennyeződés a víztesten>20%</th>
<th>Szennyezett felszíni víztest száma</th>
<th>Trend komponens</th>
<th>Minősítés</th>
</tr>
</thead>
<tbody>
<tr>
<td>p.3.3.2</td>
<td>Dráva-völgy Barcs alatt</td>
<td>Komponens k</td>
<td>Komponens nitrát</td>
<td>Komponens növény-védő-szer</td>
<td>Komponens szennyezett felszíni víztest száma</td>
<td>Komponens Trend</td>
</tr>
<tr>
<td>sp.3.3.2</td>
<td>Dráva-völgy Barcs alatt</td>
<td>Komponens k</td>
<td>Komponens nitrát</td>
<td>Komponens növény-védő-szer</td>
<td>Komponens szennyezett felszíni víztest száma</td>
<td>Komponens Trend</td>
</tr>
<tr>
<td>sp.3.3.1</td>
<td>Feketevíz-vízgyűjtő</td>
<td>Komponens NO3, SO4, EC, triazin</td>
<td>Komponens trend</td>
<td>Komponens szennyezett felszíni víztest száma</td>
<td>Komponens Trend</td>
<td>Komponens</td>
</tr>
<tr>
<td>p.3.3.1</td>
<td>Feketevíz-vízgyűjtő</td>
<td>Komponens NO3, SO4, EC, triazin</td>
<td>Komponens trend</td>
<td>Komponens szennyezett felszíni víztest száma</td>
<td>Komponens Trend</td>
<td>Komponens</td>
</tr>
<tr>
<td>kt.3.1</td>
<td>Harkány és körmeyze termálkarszt</td>
<td>Komponens NO3</td>
<td>Komponens trend</td>
<td>Komponens szennyezett felszíni víztest száma</td>
<td>Komponens Trend</td>
<td>Komponens</td>
</tr>
<tr>
<td>k.1.8</td>
<td>Mecsek - karszt</td>
<td>Komponens NO3</td>
<td>Komponens trend</td>
<td>Komponens szennyezett felszíni víztest száma</td>
<td>Komponens Trend</td>
<td>Komponens</td>
</tr>
<tr>
<td>kt.1.8</td>
<td>Mecsek - termálkarszt</td>
<td>Komponens NO3</td>
<td>Komponens trend</td>
<td>Komponens szennyezett felszíni víztest száma</td>
<td>Komponens Trend</td>
<td>Komponens</td>
</tr>
<tr>
<td>sh.1.12</td>
<td>Mecsek</td>
<td>Komponens NO3 (SO4,EC)</td>
<td>Komponens trend</td>
<td>Komponens szennyezett felszíni víztest száma</td>
<td>Komponens Trend</td>
<td>Komponens</td>
</tr>
<tr>
<td>h.1.12</td>
<td>Mecsek</td>
<td>Komponens NO3 (SO4,EC)</td>
<td>Komponens trend</td>
<td>Komponens szennyezett felszíni víztest száma</td>
<td>Komponens Trend</td>
<td>Komponens</td>
</tr>
<tr>
<td>k.3.1</td>
<td>Villányi-hegység - karszt</td>
<td>Komponens trend</td>
<td>Komponens trend</td>
<td>Komponens szennyezett felszíni víztest száma</td>
<td>Komponens Trend</td>
<td>Komponens</td>
</tr>
<tr>
<td>h.3.1</td>
<td>Villányi-hegység</td>
<td>Komponens trend</td>
<td>Komponens trend</td>
<td>Komponens szennyezett felszíni víztest száma</td>
<td>Komponens Trend</td>
<td>Komponens</td>
</tr>
<tr>
<td>sh.3.1</td>
<td>Villányi-hegység</td>
<td>Komponens trend</td>
<td>Komponens trend</td>
<td>Komponens szennyezett felszíni víztest száma</td>
<td>Komponens Trend</td>
<td>Komponens</td>
</tr>
<tr>
<td>pt.3.1</td>
<td>Délnyugat-Dunántúl</td>
<td>Komponens trend</td>
<td>Komponens trend</td>
<td>Komponens szennyezett felszíni víztest száma</td>
<td>Komponens Trend</td>
<td>Komponens</td>
</tr>
</tbody>
</table>

5. fejezet A vizek állapotának minősítése – 72 –
5.4 Védelem alatt álló területek állapotának értékelése

A védett területek kijelölésének leírása és térképi bemutatása a 3. fejezetben található. Ebben a pontban a védett területek állapotára vonatkozó értékelést mutatjuk be.

5.4.1 Ivóvízkivételek védőterületei

A nyilvántartás szerint az alegységen felszíni ivóvízbázis nem, felszín alatti (üzemelő, távlati és tartalék) ivóvízbázis 104 található. Ebből a szennyeződéssel szembeni veszélyeztetettség szempontjából sérülékenyenek 68 tekinthető (lásd 3-1. melléklet), a veszélyeztetettség vizsgálata azonban adathány miatt csak 59 esetében történt meg.

A felszín alatti ivóvízbázisok veszélyeztetettsége háromféle információ alapján vizsgálható:

- termelőkutak vagy a védőterületen belül található megfigyelőkutak szennyezettsége,
- védőterületen belül feltárt (a megfigyelőkutak által nem feltétlenül jelzett) felszíni víz, talajvíz- vagy talajszennyezések
- területhasználathoz kapcsolódó potenciális diffúz szennyezőforrások

A termelőkutakban és a megfigyelőkutakban kimutatott szennyezések alapján 2 vízbázis (Bogádmindszent, Pécs-Tortyogó vízbázis) tekinthető szennyezettnek, ahol a szennyezés már a termelőkutakat is elérte. Az előforduló szennyezőanyag a nitrát, de a növényvédő szer (triazin) és a pontszerű forrásokból származó klórozott szénhidrogének is szerepelnek az okok között. A Bogádmindszent vízbázis jogosult pályázni a biztonságba helyezési fázis végrehajtására.

A védőterületekre eső pontszerű talaj és talajvízszennyezések elemzése során a kiterjedt szennyezések vizsgálata ő elvégezhető a termelőkutakat is. Az előforduló szennyezőanyag a nitrát, de a növényvédő szer (triazin) és a pontszerű forrásokból származó klórozott szénhidrogének is szerepelnek az okok között. A pontszerű forrásokból származó szennyezőanyagok között sok a toxikus anyag, amelyre nem megoldás az ivóvízkezelési tehnológiaváltás, a szennyezőanyag kutakba való beutatását kell megakadályozni.

Általánosságban megállapítható, hogy a diagnosztikai vizsgálatok során feltárt tényleges szennyezéseket okozó szennyezőforrások között előfordulnak ipartelepek és mezőgazdasági telephelyek, hulladéklerakók, és nagyszámban benzinkutak és üzemanyagtárolók. A leggyakrabban ásványi olajszennyezések fordulnak, de jelenleg az elvégezhető diagnosztikai vizsgálattal rendelkező vízbázisok adatai

A KÁRINFO-ban számos olyan szennyezőforrásra vonatkozó adat található, amelyek a diagnosztikai vizsgálatok során feltárt tényleges szennyezésekben okozó szennyezőforrásokhoz kötődnek, így a diagnosztikai vizsgálat során az információk közvetlen elvegzi az érintett területeket.

Potenciális pontszerű szennyezőforrásokra vonatkozó információk a diagnosztikai vizsgálat adatbázisában állnak rendelkezésre. A diagnosztikai vizsgálat során a diagnosztikai vizsgálatok során feltárt tényleges szennyezéseket okozó szennyezőforrások között előfordulnak ipartelepek és mezőgazdasági telephelyek, hulladéklerakók, és nagyszámban benzinkutak és üzemanyagtárolók.

Általánosságban megállapítható, hogy a diagnosztikai vizsgálatok során feltárt tényleges szennyezésekben okozó szennyezőforrások között előfordulnak ipartelepek és mezőgazdasági telephelyek, hulladéklerakók, és nagyszámban benzinkutak és üzemanyagtárolók.

A leggyakrabban ásványi olajszennyezések fordulnak, de jelenleg az elvégezhető diagnosztikai vizsgálattal rendelkező vízbázisok adatai

A diagnosztikai vizsgálat során a diagnosztikai vizsgálatok során feltárt tényleges szennyezésekben okozó szennyezőforrások között előfordulnak ipartelepek és mezőgazdasági telephelyek, hulladéklerakók, és nagyszámban benzinkutak és üzemanyagtárolók.

A leggyakrabban ásványi olajszennyezések fordulnak, de jelenleg az elvégezhető diagnosztikai vizsgálattal rendelkező vízbázisok adatai

3-1. melléklet: Az Országos Kármentesítési Program adatbázisa. Tartalmazza a szennyezettségi határérték meghaladó szennyezésekre vonatkozó, különböző részletességgel feltárás adatait.

9 A diagnosztikai vizsgálat során a diagnosztikai vizsgálatok során feltárt tényleges szennyezések között előfordulnak ipartelepek és mezőgazdasági telephelyek, hulladéklerakók, és nagyszámban benzinkutak és üzemanyagtárolók.

Általánosságban megállapítható, hogy a diagnosztikai vizsgálatok során feltárt tényleges szennyezésekben okozó szennyezőforrások között előfordulnak ipartelepek és mezőgazdasági telephelyek, hulladéklerakók, és nagyszámban benzinkutak és üzemanyagtárolók.

A leggyakrabban ásványi olajszennyezések fordulnak, de jelenleg az elvégezhető diagnosztikai vizsgálattal rendelkező vízbázisok adatai
alapján a leggyakrabban előforduló potenciális veszélyt az üzemanyag/fűtőanyag tárolók, a nagy állatfékszámú, iparszerű állattartótelepek (sertés, baromfi, szarvasmarha) hígtrágya- és szennyvízkibocsátása, a növényvédő szer- és műtrágya raktárak, felhagyott TSZ gépeletek és az illegális hulladéklerakás jelentik. Ha nem is szennyezik a területet, a havária jellegű szennyezés lehetősége miatt fontos ezek ismerete. Veszélyesnek minősül tevékenység esetén környezetvédelmi felülvizsgálat szükséges.

A diffúz eredetű szennyezések a diagnosztikai vizsgálatok alapján gyakori szennyezésnek számítanak. Ez egyrészt települési eredetű nitrát-szennyezéseket (főként a csatornázatlan települések, belterületi jellegű kiskertes övezetek, a vezetékes ivóvízzel ellátott üdülőtelepek szennyvízszikkasztásából származóan), másrészben mezőgazdasági területekre eső szennyezéseket jelent. Bármely legényes vagy közönséges víznyomdásra megvannak kapcsolódva, azonban ezek lehetségesen változatos hőmérséklet és nemzeti térségek miatt a potenciális veszélyként nem jelent meg.

A vizsgált 59 vízbázis egyes kategóriák közötti megoszlása:
1. jól állapotú 2 vízbázis, ahol a feladat a biztonságban tartás: monitoring és a tevékenységek nyilvántartása, ellenőrzése;
2. mérsékelt veszélyeztetett 30 vízbázis, ahol a feladat biztonságba helyezési terv készítése;
3. jelentős veszélyeztetett 25 vízbázis, ahol a feladat biztonságba helyezési terv készítése, környezetvédelmi felülvizsgálat, esetleg kármentesítés elvégzése;
4. szennyezett 2 vízbázis, ahol a feladat kármentesítés elvégzése 2015-ig;
5. szennyezett termelőkutak egy vízbázison sincsenek.

Értelmezően a legmagasabb kategóriába kerültek azok a vízbázisok, ahol már a termelőkút is szennyeződött. A következő szint (szennyezett vízbázis), ha a védőterületen belüli megfigyelőkutak szennyezettek. Ez e két kategóriá volt az alapja a víztestek kémiai minősítésén belüli végrehajtott ivóvízbázis tesztnak. A veszélyeztetett vízbázisok közé tartoznak azok, ahol jelentős pontoszerű szennyezés található, de ennek jelenlegi kiterjedése még nem jelent közvetlen veszélyt a vízbázis működésére, valamint ahol a belterület aránya meghaladja a 75%-ot. A mérsékelt veszélyeztetett kategóriába akkor került egy vízbázis, ahol a belterület aránya meghaladja a 75%-ot. A megfelelő környezetvédelmi felülvizsgálat készítésével meghatározható a potenciális veszélye.

Ezek az információk lehetővé teszik a prioritások megállapítását a vízbázisok biztonságba helyezési programjának végrehajtásában. A diagnosztika munkák elvégzése számos vízbázis esetében szükséges, mely alapja a víztestek kémiai minősítésének, hiszen biztonságba helyezési terv csak így készíthető.

A védőterületeken található szennyezőforrások és potenciális szennyezőforrások részletes listáját az 5-6. melléklet tartalmazza.
5.11. táblázat: Nitrát-érzékeny-területek

<table>
<thead>
<tr>
<th>víztest</th>
<th>nitrát-érzékeny terület aránya</th>
<th>nitrát-szennyezett (>50 mg/l) pontok aránya a víztest nitrát-érzékeny részén</th>
<th>a teljes víztest nitrát-szennyezettségi aránya</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>%</td>
<td>%</td>
<td>%</td>
</tr>
<tr>
<td>sp.3.3.2 Dráva-völgy Barcs alatt</td>
<td>99</td>
<td>10</td>
<td>9</td>
</tr>
<tr>
<td>sp.3.3.1 Fekete-víz vízgyűjtő</td>
<td>33</td>
<td>15</td>
<td>24</td>
</tr>
<tr>
<td>k.1.8 Mecsek - karszt</td>
<td>84</td>
<td>31</td>
<td>29</td>
</tr>
<tr>
<td>h.1.12 Mecsek</td>
<td>58</td>
<td>5</td>
<td>12</td>
</tr>
<tr>
<td>sh.1.12 Mecsek</td>
<td>51</td>
<td>38</td>
<td>6</td>
</tr>
<tr>
<td>h.3.1 Villányi-hegység</td>
<td>100</td>
<td>kevés adat</td>
<td>kevés adat</td>
</tr>
<tr>
<td>sh.3.1 Villányi-hegység</td>
<td>100</td>
<td>kevés adat</td>
<td>kevés adat</td>
</tr>
<tr>
<td>k.3.1 Villányi-hegység - karszt</td>
<td>61</td>
<td>79</td>
<td>19</td>
</tr>
</tbody>
</table>

A táblázat adatai jelzik, hogy a nitrát-érzékeny területen belüli szennyezettségi arány sok helyen nem tér el jelentősen a víztestek egészére vonatkozó arányoktól. Ennek elsődleges oka, hogy a hazai nitrány-érzékeny területek kijelölése elsősorban vízbázisvédelmi szempontok alapján történt. Azt is fontos kiemelni, hogy a mezőgazdasági művelés alatt álló területek alatti talajvíz nitrát-szennyeződés a forrás diffúz jellege ellenére mozaikos jellegű (függ az adott tábla tápanyagforgalmától, és az igen változékony talajadottságoktól és a beszivárgási viszonyoktól). A mezőgazdasági művelés alatt álló területeken általánosan érvényes, hogy találunk 50 mg/l-t meghaladó nitrát-koncentrációjú talajvízvet, a kérdés ennek területi aránya. A jelenlegi kijelölés mellett nem érvényes, hogy a nitrát-érzékeny területeken ez az arány számottevően nagyobb lenne, mint az ország azonos régióba tartozó egyéb területein.
5.4.3 Természetes fürdőhelyek
A 78/2008. (IV. 3.) Korm. Rendelet szerint kijelölt fürdővizeket a 3.3 fejezet mutatta be, mely szerint az alegység területén nem jelöltek ki természetes fürdőhelyet.

5.4.4 Védett természeti területek
Míg az alegység területén található védett természeti területeket a 3-2. és azok főbb jellemzőit a 3-3. táblázat tartalmazza, addig e fejezet a védett területek közül a jelentősen károsodott élőhelyek bemutatásával foglalkozik.

Jelentősen károsodott élőhelynek az számit:
- mely állapota nem felel meg annak, amiért kijelölték (nem a víztest szinten értelmezett VKI szerinti jó állapotról van szó, hanem a védett terület károsodásáról, akár lokális hatások miatt),
- melyek esetében jelentős értéket képviselő egyedi élőhely károsodásáról, vagy sok helyen előforduló ismétlődő problémáról van szó.

Az e kritériumok szerint meghatározott víztől függő védett élőhelyek típus szeinti felsorolása az 5-12. táblázatban található, mely tartalmazza továbbá a védett területek, a védelem szintjét, a károsodás jellegét és okát, valamint az érintett felszíni és felszín alatti víztesteket.

5-12. táblázat: Károsodott víztől függő védett természeti területek az alegység területén

<table>
<thead>
<tr>
<th>Az élőhely vagy élőhely-csoport (típus) neve</th>
<th>A jelentősen károsodott védett természeti terület neve és kódja</th>
<th>A védelem szintje</th>
<th>A károsodás jellege</th>
<th>A károsodás oka</th>
<th>Érintett víztestek</th>
</tr>
</thead>
<tbody>
<tr>
<td>felszín alatti víztestek által tapált élőhelyek</td>
<td>Ormannási-erdők HUDD20008, Ormannási vizes élőhelyek és gyepek HUDD20052</td>
<td>JKJTT</td>
<td>élőhelyek szárazodása</td>
<td>vízhiány illetve bizonytalan</td>
<td>Dráva-völgy Barcs alatt sp.3.3.2 (AIQ518)</td>
</tr>
<tr>
<td></td>
<td>Ormannási-erdők HUDD2008, Szentegáti erőd TT</td>
<td>JKJTT, TT</td>
<td></td>
<td></td>
<td>Feketevíz-vízgyűjtő sp.3.3.1 (AIQ570)</td>
</tr>
<tr>
<td>ligeterdők: ártári kemény és puhafaligetek nagy folyók mellett</td>
<td>Közép-Dráva HUDD20056, Kelet-Dráva HUDD2007, Dráva HUDD10007, Duna-Dráva NP</td>
<td>JKJTT, KMT, NP</td>
<td>élőhelyek fokozatos szárazodása</td>
<td>főként medermélyülés, néhol elterelés miatti medermódosítás illetve oldalágak, holtágak vízutánpótlási problémái</td>
<td>Dráva alsó (AEP438)</td>
</tr>
<tr>
<td>kis vízfolyásokat kíső víztől függő élőhelyek</td>
<td>Ormannási-erdők HUDD2008, Szentegáti erőd TT</td>
<td>JKJTT, TT</td>
<td>élőhelyek szárazodása, leromlása</td>
<td>szárazodás, túlzott beavatkozás, felesleges mederrendezése k, magas depóniák, invazív fajok</td>
<td>Almás-patak alsó (AEP262)</td>
</tr>
<tr>
<td></td>
<td>Dél-Zselic HUDD20044</td>
<td>JKJTT</td>
<td></td>
<td></td>
<td>Almás-patak és mellékvízfolyásai (AEP264)</td>
</tr>
<tr>
<td></td>
<td>Ormannási-erdők HUDD2008, Szentegáti erőd TT</td>
<td>JKJTT, TT</td>
<td></td>
<td></td>
<td>Egyesült-Gyöngyös (AEP457)</td>
</tr>
</tbody>
</table>
VÍZGYŰJTŐ-GAZDÁLKODÁSI TERV

3-3 Fekete-víz vízgyűjtő

<table>
<thead>
<tr>
<th>Az élőhely vagy élőhely-csoport (típus) neve</th>
<th>A jelentős kérosodott védett természeti terület neve és kódja</th>
<th>A védelem szintje</th>
<th>A károsodás jellege</th>
<th>A károsodás oka</th>
<th>Érintett víztestek</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ormánsági-erdők HUDD20008, Ormánsági vizes élőhelyek és gyepek HUDD20052</td>
<td>JKJTT</td>
<td></td>
<td>terjedése, helyenként pontszerű szennyezés</td>
<td>Fekete-víz (AEP478)</td>
<td></td>
</tr>
<tr>
<td>Dél-Zselic HUDD20044</td>
<td>JKJTT</td>
<td></td>
<td></td>
<td>Gyöngyös (lőág) és mellékvízfolyásai (AEP544)</td>
<td></td>
</tr>
<tr>
<td>Dél-Zselic HUDD20044</td>
<td>JKJTT</td>
<td></td>
<td></td>
<td>Gyöngyös (Keleti ág) (AEP545)</td>
<td></td>
</tr>
<tr>
<td>Ormánsági-erdők HUDD20008</td>
<td>JKJTT</td>
<td></td>
<td></td>
<td>Gyöngyös (Nyugati ág) alsó (AEP547)</td>
<td></td>
</tr>
<tr>
<td>Ocsárd-hegyszentmártoni-völgyek HUDD20010</td>
<td>JKJTT</td>
<td></td>
<td></td>
<td>Hegyadó-patak-felső és Ocsárdi-patak (AEP570)</td>
<td></td>
</tr>
<tr>
<td>Ormánsági-erdők HUDD20008, Ormánsági vizes élőhelyek és gyepek HUDD20052</td>
<td>JKJTT</td>
<td></td>
<td></td>
<td>Korcsina-főcsatorna és mellékvízfolyásai (AEP705)</td>
<td></td>
</tr>
<tr>
<td>Ormánsági-erdők HUDD20008, Ormánsági vizes élőhelyek és gyepek HUDD20052</td>
<td>JKJTT</td>
<td></td>
<td></td>
<td>Kőrcsőnye-csatorna (AEP716)</td>
<td></td>
</tr>
<tr>
<td>Pécsi-sík HUDD20066</td>
<td>JKJTT</td>
<td></td>
<td></td>
<td>Pécsi-víz középső (AEP875)</td>
<td></td>
</tr>
<tr>
<td>Ormánsági-erdők HUDD20008, Ormánsági vizes élőhelyek és gyepek HUDD20052</td>
<td>JKJTT</td>
<td></td>
<td></td>
<td>Pécsi-víz alsó (AEP876)</td>
<td></td>
</tr>
<tr>
<td>Pécsi-sík HUDD20066</td>
<td>JKJTT</td>
<td></td>
<td></td>
<td>Pécsi-víz és mellékvízfolyásai (AEP877)</td>
<td></td>
</tr>
<tr>
<td>Ormánsági-erdők HUDD20008, Ormánsági vizes élőhelyek és gyepek HUDD20052</td>
<td>JKJTT</td>
<td></td>
<td></td>
<td>Selleyei-Gűröcsatorna (AEP956)</td>
<td></td>
</tr>
</tbody>
</table>

A táblázatban szereplő élőhely-típusok alapvetően a vízzel való kapcsolat (felszín alatti vizek, nagy folyók és kisvizi vízfolyások) szerint lettek meghatározva, hiszen az élőhelyek problémáinak okai is ezek alapján vezethetők vissza (így a problémák megszüntetése érdekében szükséges intézkedések is ezeknek megfelelően lettek javasolva - 8.6. fejezet).

A táblázatból jól látszik, hogy a felszín alatti vizektől függő élőhelyek esetében a probléma azok szárazodása, melyet feltehetően a felszín alatti víz nem megfelelő utánpótlódása eredményez, de ennek megállapítása bizonytalansággal terhelt.
A Dráva menti kemény és puha faligetek károsodását szintén a szárazodás jelenti, mely alapvetően a Dráva medrének mélyülésére, valamint az oldalágak, holtágak vízutánpótlási problémáira vezethető vissza.

A kisvízi vízfolyásokat kísérő élőhelyek problémái alapvetően a vízfolyásokon történt hidromorfológiai beavatkozások eredménye, de gondot jelent a szárazodás, az invazív fajok elterjedése és helyenként a pontszerű szennyezés is.

5.4.5 Őshonos halfajok életfeltételeit biztosító vizek védelme

5.5 A víztestek állapotával kapcsolatos jelentős problémák és okai

5.5.1 Vízfolyások és állóvizek

Szabályozottsággal kapcsolatos problémák (hidromorfológiai problémák)
Az alegység vízfolyásai esetében a jó ökológiai állapotot váló eltérés legjellemzőbb problémáit a hidrológiai és morfológiai kérdések jelentik, hiszen az alegység 32 víztestéből csak egynél nem szerepelt ez az okok között.

Hidrológiai és morfológiai problémák főbb okai:
- Szabályos mederforma,
- Nem megfelelő fenntartás,
- Hullámtéri tevékenység,

Állóvizek
- Tavak szennyező hatása

A számos víztestnél tapasztalható egyenes meder és szabályos mederforma a technikai személyzet vízfolyás rendezés következménye, amelynek hatásaként hiányoznak, vagy erősen korlátozottak a természetes állapotokra jellemző ökológiai állapotok kialakulásának morfológiai feltételei. (pl. változatos part-viszonyok, part menti növényzónák kialakulása).

Ökológiai szempontból a legfontosabb problémát a hidrológiai és morfológiai kérdések jelentik, illetve a vízfolyások ökológiai szempontból nem megfelelő fenntartottsága.

Vízhasznosítás szempontjából a tógaszdaságok túlsúlya jellemző, mely tavak, törendszerek völgyzárógátas vagy hossz-töltétes kialakításúak, több esetben pedig „tófűzér”-ként jelennek meg az adott vízfolyásokon. A tavak többségén intenzív halgazdálkodás folyik, melyek üzemeltetése maga után vonja a folyamatos vízpótlást és az időnkénti fenékvíz leeresztést. A völgyzárógátas tavak esetében a völgyzárógát, a hossztöltétes tavak esetében a tavak vízellátását biztosító duzzasztók jelentik a legfontosabb emberi beavatkozást, melyek a vízfolyások hosszirányú átjárhatóságát akadályozzák. A völgyzárógátas tavak esetében pontos változás, hogy a duzzasztás hatására a vízfolyás sebessége lelassul, így a duzzasztott szakasz állóvízhez közelítő jelletet mutat. Ennek eredményeképpen e szakasz feliszapolódása más mértékű és az ökológiai tulajdonságai is eltérőek, mint a vízfolyás egyéb, kevésbé módosított szakaszain. Problémaként merülhet fel egyes vízfolyások vízhiányos állapota is - ott, ahol több tó, törendsz er működik, mint amennyit a vízfolyás vízhozama elbír.
A szűk hullámter, a természetes pufferzóna, illetve a part menti védősáv hiánya, illetve keskeny volta azt jelzi, hogy a jelenlegi területhasználati szabályok (szokások) nincsenek összhangban a vizek jó ökológiai állapotának követelményével. Ez a gyakorlatban azt jelenti, hogy a művelt területek sok helyen a partélig húzódnak, így a kedvezőtlen hatások (pl. bemosódó szennyezések) közvetlenül érik a víztereket, illetve a rendkívül keskeny hullámter miatt megfelelő parti zonáció nem tud kialakulni.

Jelentős probléma a medrek és partjaik ökológiai szempontból nem megfelelő fenntartottsága, ami alatt a felesleges biomassza és laza üledék eltávolítását, a mederben és a parti sávban lévő növényzet gondozását kell érteni.

Tápanyag és szervesanyag terheléssel kapcsolatos problémák

Tápanyag és szervesanyag problémák főbb okai a vízfolyásokon:
- Belterületi diffúz szennyezés,
- Kommunális szennyvízbevezetés,
- Diffúz mezőgazdasági terhelés.

Szervesanyag terhelés tekintetében a leggyakoribb problémát a belterületi diffúz szennyezések és a kommunális szennyvízbevezetések jelentik, ennek mértékét azonban részletes vizsgálatokkal kell tisztáznii.

Ugyancsak nem elhanyagolhatók a mezőgazdasági eredetű diffúz terhelések. A terület mezőgazdasági eredetű diffúz terhelése, mint az adott talajviszonyok mellett a diffúz szennyeződés hatása mindenhol előfordulhat.

A következő leggyakoribb kockázati ok a halastavak leeresztett vize által okozott terhelés, melynek mértéke a nagyszámú intenziven gazdálkodó halgazdálgazdag halgazdaság miatt feltehetően jelentős. A halgazdaságok időnkénti vízleeresztése rövid időn belül (késő összel egy-két hónap) jelentős mennyiséget vizet és szervesanyagot juttatnak az érintett vízfolyásba. A meder iszapjának felszaporodása a halastavak feletti és alatti szakaszokon gyakoribb.

Pécs város tisztított szennyvizeinek befogadója a Pécsi-víz vízfolyás, ami a Fekete-víz vízrendszeren belül jelentős vízhozamú vízfolyásnak tekinthet. Ennek ellenére nyári (száraz) időszakokban gyakran előfordul, hogy a vízfolyás középvízhozamának jelentős részét (min. 50%-át) a tisztított szennyvíz teszi ki. A jelensés arány azt is jelenti, hogy a szennyvíztisztítási technológiában bekövetkező legkisebb probléma is súlyos következményekkel jár. A vízfolyás ökológiai állapotára nézve, de normál körfolyamatok között is erősebb befolyásolja azt.

A Fekete-víz vízgyűjtő területén található pécsi agglomerációhoz tartozik még 4 olyan település, amelyek nem csatornázottak, de 2010. dec. 31-ig meg kell oldani a szennyvízelvezetésüket. A területen található még a drávakeresztüri agglomeráció, mely 7 települést foglal magába, a síkösbotonai agglomeráció, amely 13 település szennyvízkér dését oldja meg, és önálló településekért a vajszlói agglomeráció. A felsorolt szennyvízrendszer szénhidrátban kifejezett határől történik 2015. dec. 31.

Veszélyes anyagokkal kapcsolatos problémák

5.5.2 Felszín alatti vizek
Az érintett felszín alatti víztestek száma: 13

Mennyiségi és minőségi problémák
Az alegység területén nincsenek a felszín alatti vizeknél kimutatható mennyiségi problémák.
A vízgyűjtő minden településen biztosított a közműves vízellátás. Azonban a szolgáltatott ivóvíz minősége a Fekete-víz vízgyűjtő területén 64 olyan település található, melyeken valamelyik vízminőségi paraméter kifogásolható. Ezekben a településeken technológiai, műszaki beavatkozás szükséges.
A Fekete-víz vízgyűjtő területén nagyon sok sérülékeny üzemelő ivóvízbázis és távlati vízbázis található, mivel csapadékból talajvízen keresztül közvetlenül utánpótlódó területek a jellemzőek.

Nitrát és ammónium szennyezésekkel kapcsolatos problémák
A problémák, melyek által leginkább érintett víztestek a Fekeftevíz-vízgyűjtő (sp.3.3.1) és a Villányi-hegység karszt (k.3.1), főbb okai:
- Diffúz szennyezés mezőgazdasági területről mindhárom víztestet érinti
- Településről származó diffúz szennyezés mindhárom víztest esetében
- Állattartó telepekről származó szennyezés mindhárom víztestet érinti
A felszín alatti víztestek esetében a területek mezőgazdasági műveléséből adódik az a diffúz szennyeződés, ami a talajviszonyok függvényében helyenként jelentős lehet. Ugyancsak diffúz szennyezés forrásait jelentik a területen lévő települések, amelyek nagy részén a csapadékvíz elvezetés megoldatlan és az állattartás okozta környezeti terhelés is jelen van. Az állattartás több településen intenzív, amely a külterületeket jelentősen terhel. Az aprófalvas településszerkezet miatt a lakossági szennyvízelhelyezés természet-közeli megoldását javasoljuk.

Egészség szennyezések
Ipari termelésből származó veszélyes hulladék depónia érinti a sekély porózus Feketevíz-vízgyűjtőt (sp.3.3.1).
A felszín alatti vizek állapota szempontjából Garé kármentesítése és a szennyezés teljes felszámolása elengedhetetlen.
5-13. táblázat: Vízfolyások problémafa

<table>
<thead>
<tr>
<th>Okok</th>
<th>Problémás állapotok</th>
<th>Jellemző következmények a víztestekre</th>
</tr>
</thead>
<tbody>
<tr>
<td>Árvédelmi töltések, szűk hullámter</td>
<td>Keresztirányú átjárhatóság korlátozása, nincs kapcsolat a mentett oldali mellékágakkal és hullággakkal, az árterrel</td>
<td>EXforródul probléma</td>
</tr>
<tr>
<td>Duzzasztómű, megkerült csatorna nélkül</td>
<td>Hosszirányú átjárhatóság korlátozása</td>
<td>Nagyszámúan üzemelő halás- és forgóvíz a vízfolyásokon, jelentősen hozzájárul, mind a hidromorfológia, mind a minőségi problémákhoz</td>
</tr>
<tr>
<td>Vízhátrárgázás tározás</td>
<td>Vízjárás nem megfelelő, vízszint (vízmélység), illetve ingadozása nem megfelelő, zavart/szabályozott vízszint, a sebességviszonyok nem megfelelők</td>
<td>Ökológiai állapot megváltozása</td>
</tr>
<tr>
<td>Nem megfelelő leeresztés a tározókból - kisvízi viszonyokat módosító vívizsísztatartás</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vízhasználat, vízelvonás</td>
<td>Vízhiány, túl alacsony vízszint</td>
<td>Az érintett vízfolyások vízhozama nem mindig biztons el a rájuk telepített tórendszer igényeit</td>
</tr>
<tr>
<td>Duzzasztott szakasz állapot jellemező</td>
<td>Feliszapódás</td>
<td>Állóvíztelepületi állapot az érintett vízfolyásokon</td>
</tr>
<tr>
<td>Taplóú vízfolyások nagy hordalékhézolama</td>
<td>Mederforma, mederállapot, parti sáv nem megfelelő</td>
<td>Jellemző probléma, hiszen 31 érintett víztesten számítanak, ebből 19 víztest erősen módosított besorolást kapott</td>
</tr>
<tr>
<td>Rendezett meder</td>
<td>Zavart parti sáv, zonáció, ökológia problémák, a meder benőtt</td>
<td>23 érintett víztest, a zonációs problémba nagyban bejátszanak a hullámteri tevékenységek</td>
</tr>
<tr>
<td>Nem megfelelő fenntartás, túlzott vagy elmaradt növényirtás - a mederben és a parti sávban, kotrás</td>
<td></td>
<td>22 érintett víztest, a művelés gyakran a partélig húzódik, bemosódó szennyezések</td>
</tr>
<tr>
<td>Hullámteri tevékenységek elsősorban növénytermelés</td>
<td>Kommunális szennyvíztelep - szennyvízbevezetés</td>
<td>2 víztestnél okoz problémát, a Pécsi-vízben jelentős arányt jelent Pécs város szennyezők beosztása</td>
</tr>
<tr>
<td>Kommunális szennyvíztelep - szennyvízbevezetés</td>
<td>Halastavi vízleeresztések</td>
<td>Jellemző probléma a nagyszámú ilyen hasznosítás miatt</td>
</tr>
<tr>
<td>Mezőgazdaság - szántóföldi műrága- és trágya használat - szennyezett lefolyás</td>
<td>Mezőgazdaság, hulladéklerakók (mb)</td>
<td>Családzmájántalanságból eredő hatások</td>
</tr>
<tr>
<td>Diffúz telephelyi források (mezőgazdaság, hulladéklerakók, stb)</td>
<td>Diffúz telephelyi források (mezőgazdaság, hulladéklerakók, stb)</td>
<td>A leggyakoribb problémát jelenti, 4 víztestnél beazonosított</td>
</tr>
<tr>
<td>Beltéri lefolyásból származó szennyezések</td>
<td>Diffúz telephelyi források (ipar)</td>
<td></td>
</tr>
<tr>
<td>Hulladéklerakók</td>
<td>Diffúz telephelyi források (ipar)</td>
<td></td>
</tr>
<tr>
<td>Kémiai kockázat: veszélyes anyag</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jellemzően adathányos helyzet</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

5-14. táblázat: FAV problémafa

<table>
<thead>
<tr>
<th>Okok</th>
<th>Problémás állapotok</th>
<th>Jellemző következmények a víztestekre</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mezőgazdaság - szántóföldi műrága- és trágya használat</td>
<td>A talajviszonyok függvényében jelentkezik, sekély hegyvidék: Mescek (sh.1.12), sekély porózus Feketevíz-vízigényű (sp.3.3.1)</td>
<td></td>
</tr>
<tr>
<td>Diffúz telepü ćeleti hatások</td>
<td>Nitrát és/vagy ammónium szennyezettség nagy</td>
<td></td>
</tr>
<tr>
<td>Állattartó telepek</td>
<td>A 12 víztestből 4 nem jó állapotót</td>
<td></td>
</tr>
<tr>
<td>Diffúz telephelyi források (mezőgazdaság, hulladéklerakók, stb)</td>
<td>Egyéb szennyezettség nagy</td>
<td></td>
</tr>
<tr>
<td>Diffúz telephelyi források (ipar)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

5. fejezet
A vizek állapotának minősítése
– 81 –
6 Környezeti célkitűzések

A Víz Keretirányelv a felszíni vizekre a következő környezeti célkitűzések elérését tűzi ki:

♦ a víztestek állapotomlásának megakadályozása;
♦ a természetes állapotú felszíni víztestek esetén a jó ökológiai és jó kémiai állapot megőrzése vagy elérése (vagy a kiváló állapot megőrzése);
♦ az erősen módosított vagy mesterséges felszíni víztestek esetén a jó ökológiai potenciál (a hatékony javító intézkedések eredményeként elérhető állapot) és jó kémiai állapot elérése;
♦ az elsőbbségi anyagok által okozott szennyeződések fokozatos csökkentése és a kiemelten veszélyes anyagok bevezetéseinek, kibocsátásainak és veszteségeinek megszüntetése vagy fokozatos kiiktatása.

A felszíni víztestek állapotromlásának megakadályozása, a természetes állapotú víztestek jó mennyiségi és jó kémiai állapotának elérése, a szennyezettség fokozatos csökkentése, a szennyezettség koncentráció bármely szignifikáns és tartós emelkedő tendenciájának megfordítása. Mindezeken túlmenően a vizek állapotától függő, az egyes víztestekhez közvetlenül, vagy csak közvetetten kapcsolódó védett területeken (lásd 3. fejezet) teljesíteni kell a védett ténylővénáthoz kapcsolódó, a vizeket érintő speciális követelményeket és célkitűzéseket.

A felszíni alatti vizekre a VKI- alapkövetelménye szerint a megállapított célokat 2015-ig el kell érni. A környezeti célkitűzés csak akkor érhető el, ha valamennyi intézkedés megvalósul és hatásuk meg is jelenik a vizek állapotában. Ez a gyakorlatban jellemzően így nem valósítható meg. Lehetnek olyan víztestek, ahol a jó állapot/potenciál csak a következő kétszer 6-éves tervezésben érhető majd el (2021-es vagy 2027-es határidővel), illetve lehetnek olyan természetes víztestek is, amelyekre hosszútávon is csak enyhébb cél megvalósításának van realizálása. Emiatt a VKI lehetővé teszi mentességek alkalmazását megfelelő és alapos indoklás alapján.

A mentességek lehetőségei:

♦ időbeni mentesség (VKI 4. cikk (4) bekezdés), amikor a célkitűzések teljesítése műszaki, vagy természeti okok, vagy aránytalan költség miatt a meghatározott határidőre nem érhető el, ezért annak határidejét 2021-re, vagy 2027-re lehet módosítani. (A 2027 utáni teljesítés abban az esetben fogadható el, ha minden intézkedés megtörtént 2027-ig, de ezek hatása még nem érvényesül)
♦ a természetes víztest esetében enyhébb környezeti célkitűzések megállapítása (VKI 4. cikk (5) bekezdés), ha a víztestet érintő emberi tevékenység által kiélődött környezeti és társadalmi-gazdasági igények nem valósíthatók meg olyan módszerekkel, amelyek környezeti szempontból jelentős érték megoldások, és amelyeknek nem aránytalanul magasak a költségei. Ebben az esetben azt is igazolni kell, hogy az összes olyan intézkedés megtörtént, amely a hatásokat csökkenti.

10 2006/118/EK Irányelv a felszín alatti vizek szennyezés és állapotomlás elleni védelméről (2006. december 12.)
időbeni mentességet vagy enyhébb célkitűzést egyaránt indokolhat kivételre vagy ésszerűen előre nem látható természetes ok, vagy vis major, illetve a felszíni víztest fizikai jellemzőiben, vagy egy felszín alatti víztest vízszintjében bekövetkezett új változások, illetve új emberi tevékenységek hatása. Az új változások, illetve új emberi tevékenységek hatásának kezeléséről részletesen a 9. fejezet szól.

A részletes intézkedési program műszaki és gazdasági elemeinek tervezésével párhuzamosan, a különböző társadalmi egyeztetések (ld. 10. fejezet) eredményeinek figyelembevételével került sor a célkitűzések pontosítására és a mentességek indoklásának véglegesítésére:

- Kiindulási alap azoknak az intézkedéseknak a listája, amelyek szükségesek a jó állapot (mesterséges és erősen módosított víztestek esetén a jó ökológiai potenciál) eléréséhez. Ez a lista tartalmazza a már eldöntött, folyamatban lévő, vagy tervezett intézkedéseket (kiemelten az alapintézkedéseket\(^{11}\)), és ha ezek nem elegendőek, a szükséges kiegészítő intézkedéseket. A lista összeállításakor a költség-hatékonyságra vonatkozó szempontokat is érvényesíteni kellett.

- A célkitűzések meghatározásának első lépése a listán szereplő intézkedések 2015-ig való megvalósíthatóságának elemzése. Ha a listáról valamely intézkedés nem valósulhat meg, illetve hatása nem érhető el 2015-ig, akkor ún. „mentességi indoklás” szükséges. Ennek a lépésnek a fontosságát alátámasztja, hogy a célként szükséges és elérhető hányszor érhető el 2015-ig.

Az intézkedések válogatásának, azok ütemezésének és a környezeti célkitűzések teljesítésének összehangolása többlépcsős iteratív folyamat eredménye, amelyben egyaránt szerepeinek a műszaki, a gazdasági és a társadalmi szempontok. Az iteráció mindkét irányban működött: voltak olyan esetek, amikor az intézkedés megvalósíthatósága és ütemezése határozta meg a célkitűzést, és előfordult ennek ellenkezője is, amikor az célkitűzés ütemezése determinálta a szükséges intézkedéseket. Ez a szempontrendszer végeredményben az intézkedések tervezésnek döntési prioritásait jelenti.

6.1 Mentességi vizsgálatok

A különböző mentességi indokok előfordulását foglalja össze a 6-1. táblázat, a mentességek indoklását tartalmazó útmutatót a 6-1. melléklet, a víztestenkénti mentességi indokokat a 6-2. melléklet tartalmazza.

6.1. táblázat: A mentességi vizsgálatok eredményei (az ok előfordulása a mentességet igénylő víztestek %-ában)

<table>
<thead>
<tr>
<th>Mentességi okok</th>
<th>Vízfolyások %</th>
<th>Állóvizek %</th>
<th>Felszín alatti vizek %</th>
</tr>
</thead>
<tbody>
<tr>
<td>M1: Jelenleg nem ismert megbízhatóan a víztest állapota, illetve a kedvezőtlen állapot oka</td>
<td>41</td>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td>M2: A jó állapot eléréséhez a szomszédos országgal összehangolt intézkedésekre is szükség van</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>G1: Az intézkedéseket az adott víztesten nem éri meg megtenni a becsülhető pozitív és negatív közvetlen és közvetett hatások, illetve hasznok és károk, ráfordítások alapján, víztest szintű aránytalan költségek</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

\(^{11}\) Alapintézkedések a VKI VI. mellékletében felsorolt irányelvekben (pl. Települési Szennyvíz, Nitrát irányelv) foglalt előírások hazai megvalósítását szolgáló intézkedések.
6. fejezet

6.2 Döntési prioritások

Az előző pontban bemutatottak alapján látható, hogy nem lehet minden víztestre egyszerre, 2015-ig, de 2021-ig sem elérni a környezeti célkitűzést, ezért szükség volt szükségességi kritérium rendszer felállítására, amely az intézkedésekre és a víztestekre vonatkozó idő szerinti rangsorolás szempontjait, azaz a prioritásokat rögzíti. Kétféle prioritást kell alkalmazni a VKI felépítéséből és logikájából következően:

- **intézkedési prioritást**, amely a különböző típusú intézkedéseket rangsorolja, a fontosságuk, a VKI-ban betöltött szerepük alapján,
- **területi prioritást**, amely a víztesteket rangsorol, a fontosságuk, illetve egymáshoz, vagy a védett területekhez való kapcsolódásuk alapján - ezeknél a prioritás úgy érvényesül, hogy az intézkedéseket a célkitűzésnek megfelelő ütemezéssel kell megadni.

Intézkedés típusú prioritások

- **Elsődleges prioritása** van a VKI szerinti alapintézkedések és az ún. további alapintézkedések, azaz a VKI céljait szolgáló, már hatályos tagállami szabályozási intézkedések, végrehajtásának. Ez független attól, hogy az intézkedések a VKI szempontjából szükségesek-e vagy legendőek-e célkitűzésre eléréséhez.
- **A VGT végrehajtási feltételei megteremtő, átfogó intézkedések** (jogalkotási feladatok, hatósági és igazgatási munka fejlesztése, valamint monitoring és információs rendszerek fejlesztése, a támogatási rendszerek fejlesztése, képességfejlesztés és szemléletformálás
Egyes intézkedések alkalmazását elősegítő ún. előkészítő intézkedések, azoknál a víztesteknél, ahol egyes nagy költségű intézkedések alkalmazásáról való döntés további információkat igényel.

Terület-víztest szintű prioritások

- Be kell illeszteni a terv első ciklusába azokat az intézkedéseket, amelyek elfogadott projektben szerepelnek és elősegítik egyes víztestek környezeti célkitűzéseinek elérését.
- Előnyben kell részesíteni a VKI 4. cikk 1. c) alá eső, nem megfelelő állapotú védett területeket, és a jó állapotuk eléréséhez szükséges intézkedéseket. A fürdő- és halas vizek esetében eleve 2015-ig kezeli, hogy a problémákat, a védett természeti területeken és az ivóvízbázisok védőterületein pedig mindeneképpen meg kell akadályozni a további romlást, a védett területek esetében a vizek nem megfelelő állapotát javító intézkedéseket legkésőbb 2021-ig meg kell valósítani, a 2015-ig esetleg szükséges monitoringgal és feltárással összehangolva. Fontos leszögezni, hogy itt nem a víztestek a jó állapotúnak lennie 2015, illetve 2021-ig, hanem a védettség szempontjából kifogásolt jellemzőt kell megfelelővé tenni.
- Az emelkedő szennyezőanyag-trendet mutató felszín alatti víztestek esetében a tendenciát megfordító intézkedéseket 2012-ig be kell vezetni, hogy állapotuk ne romoljon tovább.
- Azok a víztestek prioritást élveznek, ahol a jelenlegi támogatási ciklusban 2013-ig finanszírozható intézkedéseket (beleértve a szükséges, javasolt támogatási rendszerben változásokat) elérhető a jó állapot. A prioritás kiterjed azokra a jó állapotú víztestekre is, ahol a jó állapot fenntartása intézkedést igényel.
- A fentieken túl valamilyen speciális szempont indokolja, hogy a víztestre vonatkozó intézkedéseket 2015-ig vagy 2021-ig megvalósítsák – az előző, kötelezően alkalmazott szempontokkal szemben, az alábbi mérlegelési szempontokat kell figyelembe venni:
 - A probléma megoldásának sürgősége: a nem cselekvés komoly következményei és/vagy magas költségei, vészhelyzet kialakulásának lehetősége (pl. ivóvízbázis elszennyeződése);
 - Azok a víztestek, ahol a szükséges intézkedések kiemelkedően hatásosak, azaz adott intézkedési kombináció kis költséggel nagy eredményt ér el;
 - Minta jellegű, tapasztalatszerzésre alkalmas víztestek, illetve vizsgálandó intézkedések;
 - Hasonló körülmények esetében a természetes jellegű víztestek prioritást élveznek az erősen módosítottakkal és a mesterségesekkel szemben;
 - Az adott víztest ökológiai szerepe, fontossága kiemelkedő;
 - A víztest célkitűzésének megvalósításához kapcsolódó, erős társadalmi igény (pl. sok embert pozitívan érint, idegenforgalom, éghajlatváltozás hatásának mérséklése);
 - Azok az intézkedések, amelyek önmagukban is egyértelműen kedvező folyamatokat indítanak el az adott víztest esetében (pl. vízvédelmi zóna a parti sávban);
 - A közepes ökológiai osztályba sorolt víztestek előnyben részesíthetők.
6.3 Környezeti célkitűzések ütemezése

A fentiekben bemutatott tervezési folyamat eredményeként kialakult a víztestenkénti intézkedések és ehhez kapcsolódóan a célkitűzések elérésének ütemezése. Ez utóbbi úgy történt, hogy intézkedésenként az alkalmazás időpontjához hozzáadták a kivitelezés és a hatás megjelenésének idejét. A célkitűzés teljesítésének időpontját az az intézkedés szabja meg, amelyik a legkésőbb fejlődik ki hatását. A 6-1. ábra az intézkedések ütemezését mutatja, a 6-2. ábra pedig az alegység összes víztestjére vonatkozó célkitűzések elérésének ütemezését foglalja össze. Az összes intézkedés megtörténik 2027-ig, azonban vannak olyan víztestek is, ahol a természeti folyamatok időigénye miatt később következik be az állapotjavulás (ezt jelöli a 2027+ céldátum).

6-1. ábra: Víztestekre vonatkozó intézkedések megvalósulása (a megfelelő víztestek aránya az összes víztesthez viszonyítva %)

6-2. ábra: Víztestekre vonatkozó célkitűzések megvalósulása (a megfelelő víztestek aránya az összes víztesthez viszonyítva %)

A vízfolyásoknak mindössze 9%-a éri el a jó állapotot és ez az arány az első ciklusban nem változik. Ennek alapvető oka, hogy az alegységen nincs olyan vízfolyás víztest, melyen az összes
intézkedés megvalósulna 2015-ig. A következő ciklusban (2021-ig) már a víztestek majdnem felén valósulnak meg a szükséges intézkedések, a célkitűzések teljesítése szempontjából azonban jelentős lesz a lemaradás. Ez azért van, mert a „gyorsan ható” vízminőségi intézkedések súlya kicsi, sok a hidromorfológiai, illetve természetvédelmi célú intézkedés, amelyek a hatás szempontjából időigényesek. A víztestek maradék 56%-át érintő intézkedések ugyan megvalósulnak 2027-ig, de a víztestek 25%-án a környezeti célkitűzés megvalósulása 2027 utánra nyúlik. A vízfolyások esetében nincs enyhébb célkitűzés.

Az alegységen található 2 mesterséges állóvíz víztest közül egyik sem éri el jelenleg a jó potenciált. Bár esetükben az intézkedések csak a második ciklus végére (2021-ig) valósulnak meg (ekkorra várható a halastavak jó gyakorlatának bevezetése és érvényesülése), a célkitűzések elérése is ezen cikluson belül várható. Ennek oka, hogy az alapvetően vízminőségi problémával küzdő állóvizek esetében az intézkedések hatásosabbak, így az állapotukban viszonylag rövid idő alatt várható javulás. Az állóvizek esetében sincs enyhébb célkitűzés.

A legkedvezőbb kiindulási képet a felszín alatti víztestek mutatják. Eleve jó állapotú a víztestek 62%-a, azt követően pedig az intézkedések megvalósulása egyenletes. A célkitűzések elérése általában kb. egy ciklusnyi késéssel követi az intézkedéseket, a felszín alatti vizekben lejátszódó lassabb folyamatok miatt.

Hangsúlyozni kell, hogy gyakorlati jelentősége a 2015-ig végrehajtandó intézkedéseknek van, mert az ütemezést a következő tervben (2015-ben), a pontosabb állapotértékelés, az előkészítő vizsgálatok, a megvalósítás adidi tapasztalatai és a változó finanszírozási lehetőségek figyelembevételével felül kell vizsgálni és a megvalósíthatóságot újraértékelni.
VÍZGYŰJTŐ-GAZDÁLKODÁSI TERV
3-3 Fekete-víz vízgyűjtő

7. fejezet Vízhasználatok gazdasági elemzése

Ez a fejezet a költségmegtérülés értékelését, a 2009. évig bevezetett intézkedéseket tartalmazza, a vízápolitika és a költségmegtérülés érvényesülésére vonatkozó további tervezett intézkedéseket, javaslatokat a 8. fejezet ismerteti.

7.1 Közüzemi vízellátás, szennyvízelvezetés- és tiszttitás költség-megtérülésének értékelése

Díjak, állami támogatások

A jelenlegi finanszírozási rendszer elvi sémája a következő: az önkormányzat fejleszt (az állami, illetve EU támogatások segítségével), vagy állami művek esetén az állam fejleszt, a szolgáltató pedig felel a működésért, a szintetartásért.

Az árak megállapításáról szóló 1990. évi. LXXXVII. törvény értelmében az önkormányzati tulajdonú víziközművek esetében a tulajdonos települési önkormányzat képviselőtestülete, állami tulajdonlás esetén pedig a mindenki „vízügyi minisztér” – a pénzügyminisztérrel egyetértésben – az ármegállapító. E szerint a legmagasabb árat úgy kell megállapítani, hogy a hatékonyan működő vállalkozó ráfordításaira és a működéséhez szükséges nyereségre fedezet biztosítson.

A VKI szempontjából az a lényeg, hogy az arhatósgárnak a pénzügyi költség-megtérülés elvét érvényesíteni kell.

Az állam támogatási rendszer működtet a lakossági víz- és csatornaszolgáltatás területén a kiemelkedően magas költségei lakossági fogyasztókra való hatásának kiegyenlítése érdekében. Az állami támogatás összege abszolút mértékben is 18%-al csökkent 2004 és 2009 között, a támogatás realértéke 33%-al csökkent.

A díjak 3-4-szeresére növekedtek az utóbbi 10 évben, a növekedés mértéke messze meghaladta az inflációt (ami közel 60%-kal nőtt ebben az időszakban).

A nem lakossági átlagos vízdíjak 2009-ben 50%-kal, a csatornádíjak 43%-kal haladják meg a lakossági díjakat.

Az elmúlt évtizedekben a víziközmű szolgáltatások díja nem fedezte, a meglévő közművágon megújítását, pótlását szolgáló beruházások jelentős részét, a vízbázisvédelem költségeit. Ezen túlmenően egyéb gazdálkodási (magas a kinnlévők aránya, alacsony a rákötési arány, kihasználati kapacitások vannak) és szervezeti problémák (szervezeti szétaprózódás közel 380 szolgáltató) is jelentkeztek. Az önkormányzati tulajdonban lévő tárgyi eszközök után fizetett bérleti díj nagysága sok esetben kisebb, mint az értéksőkkenés, e díjakat egyes önkormányzatok nem is forgatják vissza a tárgyi eszközök pótlására, hanem más célra, fejlesztési forrásként használják fel. Mindezek miatt szükséges a szabályozás továbbfejlesztése 2010-ben.

A költségmegtérülési mutatók

Az egyes cégek, szolgáltatási csoportok helyzete rendkívüli módon eltérő. A nagy (pl. fővárosi, regionális cégek) mutatói nagyságrendjük alapján fogva lényegesen módosítják a tendenciákat.

A kisebb szolgáltatói kategóriák felé haladva a víziközmű kialakításának költségének megújítása, pótlása szintén jelentős részét, a vízfolyás védelme költségeit. Ezen túlmenően egyéb gazdálkodási (magas a kinnlévők aránya, alacsony a rákötési arány, kihasználatsú kapacitások vannak) és szervezeti problémák (szervezeti szétaprózódás közel 380 szolgáltató) is jelentkeztek. Az önkormányzati tulajdonban lévő tárgyi eszközök után fizetett bérleti díj nagysága sok esetben kisebb, mint az értéksőkkenés, e díjakat egyes önkormányzatok nem is forgatják vissza a tárgyi eszközök pótlására, hanem más célra, fejlesztési forrásként használják fel. Mindezek miatt szükséges a szabályozás továbbfejlesztése 2010-ben.
7. táblázat: Pénzügyi megtérülési mutató az elszámolt költségek alapján (nettó bevétel/üzemi ráfordítás) 2005. (%)

<table>
<thead>
<tr>
<th>Szolgáltatói csoport</th>
<th>Ivóvíz</th>
<th>Szennyvíz</th>
<th>Összesen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ország összesen</td>
<td>98,5</td>
<td>99,9</td>
<td>99,2</td>
</tr>
<tr>
<td>Lakosság</td>
<td>96,2</td>
<td>94,0</td>
<td>95,2</td>
</tr>
<tr>
<td>Közület</td>
<td>104,3</td>
<td>110,6</td>
<td>107,8</td>
</tr>
<tr>
<td>Egyes szolgáltatói csoportok</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>> 5000 em³/év szolgáltatók</td>
<td>101,4</td>
<td>103,8</td>
<td>102,7</td>
</tr>
<tr>
<td>< 100 em³/év szolgáltatók</td>
<td>78,4</td>
<td>51,7</td>
<td>65,8</td>
</tr>
</tbody>
</table>

Amennyiben figyelembe vesszük az elmaradt pótlásokat és az elmaradt üzemeltetési és karbantartási munkákat, akkor a kép sokkal rosszabb. A módosított pénzügyi megtérülési mutató a 99,2%-ról, a két ágazat együttesére 81,6%-ra csökken.

Fizetőképesség alakulása

A lakossági díjak fizetőképességének elemzése a nemzetközi és hazai gyakorlatnak megfelelően a közüzemi vízszolgáltatáson fordított kiadások és a nettó háztartási jövedelmek aránya alapján történt. Magyarország vonatkozásában a megfizethetőségi ráta felső korlátjának a 2,5-3,5%-ot tekintik. Az átlag díjak tekintetében már ma elériuk ezt a szintet, mert a víz- és csatornaiadások 2009-ben a magyar háztartási kiadások háztartási nettó jövedelmének 3,4%-át (1,8 % a vízdíj, 1,6 % a szennyvízdíj) teszik ki. Természetesen ez jelentősen változik az egyes térségek és jövedelmi kategóriáktól függően. A lakosság első jövedelemzintédek átlagos terhelése 5,7 % (3,1 % a vízdíj, 2,6 % a szennyvízdíj), még úgy is, hogy az átlagos vízfogyasztásnak csupán 70 %-át fogyasztkája.

Megállapítható, hogy az elmaradt térségekben a vízre fordított kiadások meghaladják a jövedelmek 5%-át, a legszegényebb 10%-ban pedig a 10%-ot, de még a leggazdagabb térségekben (pl. Budapest) is lényegesen meghaladják a 2,5%-ot (2,9 %). Amennyiben 2015-ig megvalósulnak az alapintézkedések, de a pótlási elmaradások nem kerülnek feltöltsére, akkor az országosan átlagos megfizethetőségi arány 4,1%-ra nőhet, a hátrányos kis térségekben pedig meghaladhatja a 6,7%-ot. Ha az elmaradt, szükséges pótlásokat is fedezik díjak alakulásának ki, akkor az átlagos díjak 2015-ben már a jövedelmek 4,7%-át, a hátrányos helyzetű társadalomként pedig 7,7%-át, a legszegényebb 10%-nál pedig 12%-át tennék ki. Amennyiben a fentiek megfelelően a kiegészítő intézkedések is 2015-ig megvalósulnak, akkor ezek a mutatók még tovább romljanak, intézkedési típusától és területétől függő mértékben. Azokban a hátrányos helyzetű térségekben, ahol szükség van pl. a feldolgozás ilyen kombináltak is, komoly pótlásokat kell megvalósítani, ott a megfizethetőségi mutató elérheti akár a 11%-ot is.

Mindebből az következik, hogy 2015-ig nem lehet olyan díjszintet kialakítani, ami az alapintézkedések miatt a költségnövekedéssel összhangban teljes mértékben fedezte a pótlási igényeket. A megfizethetőségi korlátozás miatt a kiegészítő intézkedések későbbi – 2015 utáni – ütemezése javasolt általában, kivéve, ha az átlagos jövedelmi szempontból és megfizethetőségi szempontból realizálisan megvalósítható.

7.2 Mezőgazdasági vízszolgáltatások pénzügyi költségmegtérülésének értékelése

A mezőgazdasági célú vízszolgáltatások a jogszabályi előírásokból következően szorosan összekapcsolódnak e szervezetek mezőgazdasági célú vízkárelhárítási feladataival, ugyanis a kizonasok öntözési célú csatornáktól, szivattyútelepektől eltekintve az érintett vízfolyások és vízi
létesítmények, műszaki berendezések a mezőgazdasági célú vízgazdálkodás vízhasznosítási célja mellett a vízkárelhárítást is szolgálják, s a kezelt, illetve üzemeltetett vizek, vízi létesítmények jelentős része csak vízkárelhárítási funkciókat tölt be. Egy-egy vízrendszer által biztosítandó funkciók nagyobbik része – belvíz elvezetés, belvíz károk elleni védekezés, jóléti és természetvédelmi célú vízpótlás, egyéb ékológiai szolgáltatások – a vízhasznalatok körébe tartozik. Az öntözés, a halastavi vízellátás vízszolgáltatás a VKI szemléletmódja szerint, tehát a költségmegtérülés elvét figyelembe vevő áropoliszkákat kell alkalmazni. A mezőgazdasági vízszolgáltatást a műveket üzemeltető szervezetek, a KÖVIZIG-ek és a társulatok végzik.

Környezetvédelmi és Vízügyi Igazgatóságok

Maga a vízszolgáltatási díjmegállapítás nem tartozik a hatósági áras körbe, ez lényeges különbség a víz- és csatornadinjákhoz képest.

A KÖVIZIG-ek által alkalmazott vízszolgáltatási díjak képzésére központi előírás, irányelvek nem vonatkoznak. A díjak emelése az inflációhoz igazodik, a partnerek magasabb díjak térítésére általában nem képesek, a kihasználtágé is meglehetősen alacsony. A díjak mértéke, a díjképzés módja és struktúrája is eltér az egyes igazgatóságoknál.

Előfordul területarányos aladó, lekötött mennyiség arányos rendelkezésre álló díj, változó díj, időszakból függő díj, illetve vanak átalányúdíjas megoldások. A költségkalkuláció és a kettős működő csatorna esetén a vízszolgáltatásra eső költségek lehatárolása is különböző.

Előfordul területarányos alapdíj, lekötött mennyiség arányos rendelkezésre álló díj, változó díj, időszakból függő díj, illetve vanak átalányúdíjas megoldások. A költségkalkuláció és a kettős működő csatorna esetén a vízszolgáltatásra eső költségek lehatárolása is különböző.

A KÖVIZIG-ek gazdálkodását jellemző dokumentumokban a hozzáférhető pénzügyi adatokból a pénzügyi költésmegterülés helyzete nehezen ítélhető meg. A pénzügyi megtérülési arányra tehát csak nagyvonaluk szakértői becslés adható. A mezőgazdasági vízszolgáltatás pénzügyi megtérülési aránya az üzemelési és fenntartási költségek vonatkozásában, a KÖVIZIG-ek esetében 65% és 80% közé tehető. A beruházások, beleértve a pótlások és rekonstruálók teljes egészében állami forrásokból valósulnak meg.

Társulatok

A VKI szerinti vízszolgáltatók másik nagy csoportját a vízítársulatok alkotják, amelyek eljuttatják az öntözési és halastavi célú vizet a gazdálkodók – a KÖVIZIG-ek által közvetlenül ellátottak kivételével – földjeire, az ezzel járó költségeiket az ezzel járő állásokat áthárítják, és térítik a KÖVIZIG-ek által meghatározott vízszolgáltatási díjakat.

A társulatok gazdálkodásának, vagyis szabad felhasználású bevételeinek, a közfeladatok finanszírozásának alapját az adó módjára behatárolt társulati (érdekeltségi) hozzájárulás bevizetése jelenti.

2010. januárától a vízítársulatokról szóló (2009. évi CXLIV.) törvény értelmében a társulatok a mezőgazdasági vízhasznosítást is közfeladatként látják el, tehát a mezőgazdasági vízhasznosítási feladatokat is a társulati hozzájárulásokból lehet finanszírozni. A társulat dönthet úgy is, hogy a mezőgazdasági vízszolgáltatást nem közfeladatként, hanem szerződéses formában, öntözési díj ellenében látja el. Lehetőség van az alaphozzájárulás mellett differenciált hozzájárulás bevezetésére is. A törvény ezirányú módosítása nem írja fel a VKI azon követelményét, hogy a mezőgazdasági vízszolgáltatásra a költség fedezés elvét biztosíthatják. A közfeladatként való definíálás és a társulati hozzájárulásból való finanszírozás megermeti a lehetőségét, hogy a felmerült költségeket is bejárhatók a hozzájárulások közvetlenül a hozzájárulásból, tehát a felüljárások köré terítése szét valamilyen módon a költségeket.

A társulatoknál a mezőgazdasági vízszolgáltatás pénzügyi költségeinek megtérülése a jelenlegi finanszírozási rendszer alapján az érdekeltségi hozzájáruláson keresztül elvileg biztosított. Hiszen a mezőgazdasági vízszolgáltatás támogatottsága minimális és a
fejlesztésekhez kapcsolódik. A társulatok kiegyensúlyozott gazdálkodása ezért csak a szolgáltatás költségéhez igazodó érdekektől függő hozzájárulások és díjak alkalmazása esetén valósulhat meg.

Itt sincs egységes költségkalkulációs rendszer, amelyre a díjképzés, illetve az érdekeltségi hozzájárulás rendszere épülhet fel. Jellemző azonban, hogy a pótlásra a díjak, illetve az érdekeltségi hozzájárulások nem nyújtanak elegendő fedezetet. Szakértői becslések szerint, ha a rekonstrukciók igényeit is fedező szolgáltatási díjak alakulnának ki, akkor a díjak 2-3-szorosára is nőhetnek.

7.3 A vízszolgáltatások külső költségeinek jelenlegi megfizettetetésének helyzete

Magyarországon 2004 óta a környezetterhelési díjak rendszere működik, amelyek VKI céljainak elérését, illetve a környezeti költségek internalizálását segítik elő. Ezek a vízterhelési díj és a talajterhelési díj.
A vízhasználatok után fizetendő vízkészlet-járulék intézménye a vízkészletek igénybe-vételének értékarányos szabályozása a vízhasználati céltól és a felhasznált víz típusától függően.

A környezet és a vízkészlet használatának költségmegtérítési rendszerei jó irányt adnak a fenntarthatóság biztosítására. A jelenlegi díjak mértéke ugyanakkor a valós környezeti és erőforrás költségeknek csak egy részét fedezi fel. A díjak a központi költségvetés általános bevételét képezik, nincs mechanizmus arra, hogy e bevételek és a járulék a környezetvédelmi intézkedések közvetlen finanszírozását szolgálták.
A környezeti és készletköltségek súlya a vízbevételhez, illetve a nyereséghez képest ténylegesen a közvetlenül és közvetetten viselt költségek összege alapján a mezőgazdaság, halászat esetén jelentősebb. Az ipar terhelése az adott nyereséghez képest közvetlenül az 1 %-ot, bár jelentős különbségek húzódnak meg az egyes ágazatok között. A viszonylag kisebb nyereségesség miatt elsősorban az élelmiszeripar terhelése a legnagyobb. A másik leginkább érintett iparág a vegyipar, amely azonban igen jó jövedelmezősséggel terem.
A járulék a vízkivétel költségének mind az iparban, mind a mezőgazdaságban, mind a közüzemi szektorban viszonylag kis hányadát teszi ki, ezért általános víztakarékos hatása mérsékelt.
Az elmúlt évek tapasztalata mutatja a mezőgazdasági vízhasználatok esetében, hogy a nullás kulcs bevezetése a készletek felügyeletéhez szükségesen alacsony költség lehetősége szempontjából káros volt. Ezért egy minimális, a hitelére ösztönző szorzó visszaállítása minden esetben javasolható.

A vizekkel, vízszolgáltatásokkal kapcsolatos teljes költség pénzügyi költségen kívüli részének egyik összetevője az erőforrás költség, vagy készlet költség (az elszalasztott lehetőségek költsége).

Magyarország eddig nem szembesült nagymértékű vízhiánnyal. Lokális jelenségek azonban már ma is felhívják a figyelmet, hogy az általában meglévő jól ellátottság nem a készletek végteleségét jelentik, a vizsgálatok erre a differenciáltságra mutatnak rá. Ezekből az elemzésekből egyértelmű a víztestek kiaknázhatóságának korlátozása. Számos esetben a jelenlegi használat már túl van a fenntartható használat lehetőségét biztosító határon. A differenciált helyzetre szabályozói oldalról is meg kell adni a választ, a javaslatok a 8. fejezetben találhatók.
8 **Intézkedési program**

Az 5-5. fejezetben bemutatott jelentős vízgazdálkodási problémák okainak csökkentésére vagy megszüntetésére intézkedéseket kell kidolgozni. Az **intézkedések programja** tartalmazza a VKI céljainak megfelelően a vízfolyásokra, állóvizekre és felszín alatti vizekre, valamint a védett területekre vonatkozó környezeti célkitűzések eléréséhez szükséges szabályozási, műszaki, finanszírozási, intézményrendszeri feladatokat.

Az intézkedések tervezése (egyeztetése) különböző léptékben történt: a szabályozási és a finanszírozási háttér valamint az intézményi intézkedések tervezése országos szinten, a közvetlen állapotjavító intézkedéseké, pedig víztest szinten. Az utóbbi csoportba tartozó intézkedéseket a legtöbb, a részvízgyűjtő és az országos szintű tervek a léptéknek megfelelő hangsúlyokkal és részletessecsléggel foglalják össze. A Duna–vízgyűjtő magyarországi részére készült vízgyűjtő-gazdálkodási terv – amely a terv alapját képezi – valamennyi intézkedést tartalmazza, részletesen bemutatja az intézkedések szabályozási hátterét és az intézmény-fejlesztéssel foglalkozó intézkedéseket, valamint összefoglalja az intézkedések víztest szintű alkalmazásának országos szintű jellemzőit, beleértve a finanszírozást is.

Az intézkedések programja iteratív szakmai és társadalmi egyeztetési folyamat eredményeként alakult ki. A környezeti célkitűzések és az intézkedések összehangolt tervezésének lépéseit a 6. fejezet mutatja be. Ennek alapja az **intézkedések víztestenként kialakított listája**, amely az állapotjellemzőkre (minősítésre), a nem megfelelő állapotot (problémát) kiváltó okokra (terhelésekre és igénybevételekre), a felszíni vizek esetén a mesterséges vagy erősen módosított jellegre, valamint az intézkedések hatékonyságára vonatkozó információk együttes figyelembevételével alakult ki, és tartalmazza az intézkedések ütemezését 2015-ig, 2021-ig és 2027-ig (6-2. melléklet).

Az intézkedések tartalmának és víztestenként alkalmazásának véglegesítésében kiemelt szerepe volt a többszintű társadalmi egyeztetés folyamatán (lásd 10. fejezet).

A tervezés itt nem áll meg, legkésőbb 2012-ig meg kell teremteni az intézkedési program végrehajtásának feltételeit, amelyben kimagasló szerepe lesz a monitoring rendszerek továbbfejlesztésénél, a jogszabályi környezet megfelelő módosításánál, a finanszírozási lehetőségek kialakításánál és általában az ún. „átfogó”, az egész országra érvényes intézkedések elindításánál. A 8-1. fejezet ezeket az ún. átfogó intézkedéseket mutatja be. A 8-2. – 8-7. fejezetek az intézkedéseket a jelentős vízgazdálkodási problémák és az azokat kiváltó okok szerinti felületén átgyaljja, ezen belül megjelennek a jelenleg érvényben lévő intézkedések és a további, megvalósítandó intézkedések. Az egyes intézkedéscsoportok egyaránt tartalmaznak szabályozási feladatokat (vannak dominánsan szabályozási jellegű intézkedések is), illetve a szabályozással összhangban megvalósuló műszaki beavatkozásokat.

A 8-8. fejezet a finanszírozási igényeket és a várhatóan rendelkezésre álló forrásokat mutatja be. Az utolsó 8-9. fejezet a nemzetközi együttműködés érdekében készült intézkedések és a várhatóan rendelkezésre álló forrásokat mutatja be. Az 8-10. fejezet a nemzetközi együttműködésben és a határon átnyúló problémák kezelésével foglalkozik.
8.1 Átfogó intézkedések

Az átfogó intézkedések jelentősége kimagasló mind a végrehajtás előkészítésében, mind a következő 2015-ben előírt terv felülvizsgálat során. **Az átfogó intézkedések nélkül a terv nem hajható végre.** Ezekkel a lépésekkel lehet alkalmassá tenni az államigazgatást, önkormányzatokat, az érintett ágazatokat és a lakosságot a VKI újszerű követelményeinek megértésére és az alkalmazkodásra.

8.1.1 Jogalkotási és egyéb végrehajtási feladatok

A **megfelelő jogszabályi környezet biztosítása** egyik alapvető feltétel a VKI célkitűzéseinek eléréséhez. Az Intézkedési Programban megfogalmazott feladatokat 2012-ig be kell indítani. Az átfogó intézkedések és a műszaki beavatkozások megvalósulását szolgáló szabadágyozási feladatok ütemezett megvalósítására a **kormányhatározatot szükséges előkészíteni**, amelynek során meg kell határozni a megvalósítandó államigazgatási feladatokat és azok forrását. Az intézkedések programjáról 2013 márciusában jelentést kell készíteni az Európai Bizottság számára.

A VGT teljes tervi életciklusát nyomon kell követni és értékelni: a terv intézkedéseinek előkészítése és megvalósítása, az intézkedések hatékonyságát ellenőriző folyamatos monitoring-értékelések visszacsatolása, majd ennek alapján a terv felülvizsgálatával a következő 6 éves terv elkészítése, amelynek személyi és tárgyi feltételeit biztosítani szükséges, beleértve a **megfelelő háttérintézményi bázis** kialakítását.

8.1.2 Igazgatási eszközök fejlesztése

a) **jelenleg érvényben lévő intézkedések**

Az EU Irányelv és hazai szabályozás alapján (stratégia) környezeti vizsgálatra köteles terv, illetve program elfogadásakor, illetőleg előterjesztésekor figyelembe kell venni a környezeti értékelést, valamint a környezeti vizsgálat során kapott véleményeket és észrevételeket, valamint a döntés eredményéről tájékoztatni kell mindazokat, akikre a terv illetve program környezeti hatása kihat. (A vízgyűjtő-gazdálkodási tervre stratégiai vizsgálat készült.)

A vonatkozó EU Irányelv alapján a hazai jogrendbe átültetett **környezeti hatásvizsgálat** a beruházás tervezési folyamatának és engedélyezési eljárásának része. A környezeti hatásvizsgálat egy előrejelzési módszer, amelynek célja, hogy valamilyen tervezett emberi tevékenység tényleges megvalósításának megkezdése előtt a várható környezeti hatásokat felmérje, meghatározza, értékelje, és ezek alapján befolyásoló tényezője legyen a megvalósítás engedélyezéséről való döntésnek.

A környezetvédelmi és vízügyi hatóság egyes tevékenységek környezetre gyakorolt hatásának feltárására és megismerésére, valamint a környezetvédelmi követelményeknek való megfelelés ellenőrzésére az érdekelket **környezetvédelmi felülvizsgálat** készítésére kötelezheti, vagy ha környezet veszélyeztetést, illetve -szennyezést észlel, a szükséges intézkedések meghozatala céljából.
A környezetvédelmi igazgatásban a következő engedély típusok alkalmazhatók:

- környezetvédelmi engedély
- környezetvédelmi működési engedély
- egységes környezethasználati engedély
- elvi-, létesítési-, és üzemeltetési vízjogi engedély
- egyéb határozat.

A tevékenységekre vonatkozó engedélyek között több további olyan, nem a környezetvédelmi igazgatás szakmai kompetenciájába tartozó engedély is van, melyek a vizek jó állapotának alakulását közvetlenül, vagy közvetve befolyásolják. Ezen engedélyezési eljárásokban a környezetvédelmi, természetvédelmi és vízügyi hatóság szakhatósági hatáskört gyakorol (lásd pl. építési, bányahatósági vagy talajvédelmi eljárások).

b) további megvalósítható intézkedések

- A környezeti vizsgálati eljárás módosítása oly módon, hogy az egyes tervek, programok vizsgálata térjen ki VGT-ben megfogalmazott céllítűzésekre gyakorolt hatásokra is.
- A környezetvédelmi és a vízjogi engedélyezési eljárásokban a VGT szempontok érvényesítésének biztosítása, a VKI 4. cikk (7) szerinti vizsgálatok elvégzésének előírása minden érintett fejlesztésre.
- Környezetvédelmi felülvizsgálat kezdeményezési lehetőségének megteremtése olyan létesítmények esetében, melyek üzemeltetése, vízhasználata, vízszennyező anyag kibocsátása veszélyezteti az érintett víztest környezeti célkitűzéseinek teljesítését.
- A vízjogi engedélyezési eljárás módosítása, az engedélyek felülvizsgálati lehetőségének változtatása (a VGT-ben meghatározott állapotértékek és környezeti célkitűzések, valamint az egyéb vízvédelmi szabályozási előírások alapján az illetékes hatóság szükség esetén kezdeményezhesse a meglévő engedélyek felülvizsgálatát a célkitűzések teljesíthetősége érdekében).

A VKI 4. cikk (7) szerinti vizsgálatok követelményrendszerét és útmutatóját szükség esetén ki kell dolgozni.

8.1.3 Hatósági és igazgatási munka erősítése

A javasolt intézkedések megvalósításánál egyrészt többlet hatósági feladatok keletkeznek, másrészről a hatósági munka hatékonyságának növelése érdekében szükséges felülvizsgálati és összehangolni a különböző hatáskörrel, működési területtel és feladatokkal bíró szervezetek vízgazdálkodási feladatait és felelősségi körét.

A VGT végrehajtásában érintett intézményrendszer (zöldhatóság, mezőgazdasági szakigazgatás, vízügyi és természetvédelmi igazgatás, önkormányzat stb.) felkészültségének, kapacitási szintjének javítása, valamint az egységes szakmai megítélés kialakításához továbbképzések biztosítása szükséges. A hatékony hatósági munka alapja a jogszabályi előírások és szakmai fogalmak azonos értelmezése nemcsak az adott hatóságon, hanem a közigazgatás egészében belül. Az egységes jogalkalmazás érdekében szükséges a jogalkalmazási problémák feltárása és azok kiküszöbölése megfelelő útmutatókkal, a hatósági szakemberek továbbképzésével, szükség szerint a jogszabályok összehangolásával stb.

Az új közigazgatási törvény alapján a hatóságok pénzügyi felelősséggel is tartoznak az eljárási idők túllépése miatt. A megfelelő képzettségű személyi állomány növelése nélkül a többlet
VÍZGYŰJTŐ-GAZDÁLKODÁSI TERV
3-3 Fekete-víz vízgyűjtő

hatósági feladatok megfogalmazása a hatósági munka hatékonyságának további romlását, esetlegesen annak ellehetetlenülését is eredményezheti.

Az Intézkedési Program megvalósításában kiemelt jelentősége lesz a hatósági feltételelszabályozás – személyi, tárgyi és pénzügyi feltételek – biztosításának, amelyhez az intézményrendszer feladat finanszírozásának megoldása szükséges.

8.1.4 Monitoring hálózat és eszközök fejlesztése

a) jelenleg érvényben lévő intézkedések

A VKI és a vonatkozó hazai szabályozás alapján a tagállamoknak gondoskodni kell a vizek állapotának ellenőrzésére irányuló monitoring programok kidolgozásáról, hogy a vizek állapota minden egyes vízgyűjtő kerületben összefüggő és átfogó módon áttekinthető legyen. A VKI végrehajtásához kapcsolódó monitoring hálózatok és működési rendszer monitorozását a KEOP uniós forrásokkal támogatja. Ugyanakkor a feladat bővüléséből következő működési többlet költségeket a hazai forrásból kell biztosítani.

b) további megvalósítandó intézkedések

A VKI szerinti monitoring rendszer fejlesztése és működtetésének biztosítása, mely a felszíni és felszín alatti vizek mennyiségi és minőségi állapotának megállapítását, jellemzését, illetve az állapot rövid és hosszú távú változásának leírását lehetővé teszi. A fejlesztésnek - ahol az szükséges - ki kell terjednie a Natura 2000 Irányelvben szereplő, víztől függő védett élőhelyek monitorizálására és a védett területek monitorozásával történő harmonizációra.

Bővíteni kell a mérési hálózatot és meg kell erősíteni a kibocsátók mérésekként egybekötött hatósági ellenőrzését. Megbízható és elegendő mérési adat hiányában az intézkedések nem tervezhetők kellő biztonsággal. A főbb feladatok:

- A monitoring mintavételi helyeinek bővítése
- A mintavételi, mérési gyakoriság növelése és a mért komponenskör kiterjesztése. Utóbbin belül különös hangsúlyt kell fektetni a veszélyes szerves mikrosvennyezőkre.
- A monitoring végrehajtásához szükséges infrastruktúra, intézményi-laboratóriumi háttér fejlesztése;
- Speciális felméréseknél programok kidolgozása és végrehajtása az adat és információ hiány megszüntetésére;
- A monitoring üzemeltetés szervezeti, koordinációs hátterének megerősítése és a monitoring értékelési rendszerének;

A monitoring-hálózat bővítésére, a vizsgálandó komponenskör kiterjesztésére a jelenlegi monitoring-rendszer üzemeltetési, működtetési költségeinek jelentős növelése és a költségvetésben elkülönített történő biztosítása szükséges.

A monitoring adatok elemzése és az állapotértékelés jövőbeli elősegítése érdekében erősíteni kell az összhangot az ágazati, ágazatközi monitoring rendszerek között (pl. környezettudomány, mezőgazdaság, egészségügy, természetvédelem, vízgazdálkodás stb.) annak érdekében, hogy költség-hatékony módon a megfelelő adatok álljanak rendelkezésre az intézkedések eredményességének értékelésére céljából.

E feladat végrehajtása is szükségesse teszi egy komplex szakmai háttérintézmény működését, mely az EU közös végrehajtásában is magas szintű szakmai ismeretekkel képes részt venni.
8.1.5 Az informatikai rendszerek fejlesztése

A VKI-hoz kapcsolódó adatbázisok, informatikai rendszerek fejlesztése a vízgazdálkodás minden szakterületét éri, valamint a vízzel kapcsolatba kerülő más szakterületekre is kiterjed.

a) jelenleg érvényben lévő intézkedések

A VKI végrehajtásához kapcsolódó informatikai rendszerek fejlesztését a KEOP uniós forrásokkal támogatja. Ugyanakkor a feladat bővüléséből következő működési többlet költségeket hazai forrásból kell biztosítani. A VKI hatékony területi, nemzeti és vízgyűjtőkerület szintű végrehajtása érdekében a kapcsolódó terhelési-, monitoring-, állapotértékelési- és jelentési- adatbázisok fejlesztése, és harmonizálása, valamint a tájékoztatás és nyilvánosság biztosítása érdekében a vízügyi és környezetvédelmi informatikai rendszer, valamint a kapcsolódó vízre, védett területekre vonatkozó egyéb információ rendszerek fejlesztése szükséges.

b) további megvalósítható intézkedések

Az ágazati információk rendelkezésre állásának biztosítása: Alapvető fontosságúak a monitoring hálózatokhoz kapcsolódó informatikai fejlesztések és az adatszolgáltatási kötelezettség fejlesztése és számonkérése. Biztosítani kell az adatok ellenőrzését, szakszerű tárolását. Ennek alapján szükséges:
1. az adatszolgáltatásra vonatkozó garanciák fejlesztése.
2. az adatok fogadása és ellenőrzése (beleértve a határidők betartását) feltételeinek kialakítása
3. a biztonságosan működő adattárolási és adatszolgáltatási rendszerek megteremtése
4. az adat- és metadat leírások alkalmazása
5. az adathozzáférés korszerűsítése (pl. Internet)
6. az adatkezeléssel kapcsolatos feladatok prioritás elvű rendezése

Első lépésként a tárcán belül az ágazati rendszerek (VIZIR, OKIR és TIR) VKI informatikai követelményeinek megfelelő harmonizálására, van szükség. A VKI integrációs törekvései csak úgy lehet maradéktalanul teljesíthető, ha a vízzel kapcsolatos információk adatbázis szinten elérhetők és feldolgozhatók. A vízzel kapcsolatos adatok két nagy csoportja: az ún. területi szintű feltáró (immissziós, vízrajzi) és a környezet használati/terhelési (emissziós, vízhasználati) adatok. Ezek részben elkülönülnek egymástól, hiszen az egyik előállítása elsősorban államigazgatási feladat, míg a másik a környezet használók adat-szolgáltatása. Ugyanakkor az adatok feldolgozása igényli, hogy a különböző forrásból származó adatok együttesen elemezhetőek és értékeltethetők legyenek. Számos jól működő alrendszer található a tárcában, de az alrendszer közötti kapcsolatok csak ritkán vannak kialakítva. Feladatok:

A VIZIR, OKIR, TIR összekapcsolási pontok felderítése és kiépítése, adatfelelősség körök tisztázása és rögzítése (amely nem járhat a másik szakterület adatoktól való elzárásával).

Mindhárom informatikai rendszeren belül a jelenlegi és további „vizes” szakrendszerek fejlesztése (pl. veszélyes anyagok emissziója és immissziója, öntözési és meliorált területek adatai, vízjogi engedélyek adatai (vízikönyvi nyilvántartás), ivóvízbázis védőterületek, vízkészletek nyilvántartása (vízrajzi adatok feldolgozása, valamint termelési adatok gyűjtése, nyilvántartása, városi csapadékvíz terhelési információk, stb.)

Az ágazatoki, műszaki, társadalomtudományi, gazdasági információk integrált rendszerének kialakítása, az információk rendelkezésre állásának biztosítása: Az egyes
8.1.6 Vízi szolgáltatások költségeinek visszatérülésére tett intézkedések

a) jelenleg érvényben lévő intézkedések
A jelenleg érvényben lévő intézkedéseket a 7. fejezet ismerteti.

b) további megvalósítandó intézkedések

Pénzügyi költségmegtérülés
Az elmúlt évtizedekben a víziközmű szolgáltatások díja nem fedezte, a meglévő közművágyon megújítását, pótlását szolgáló beruházásokat és egyéb gazdálkodási, szervezeti problémák is jelentkeztek.

- Szükséges olyan árszabályozás megalkotása, amely a kialakítandó felügyeleti és árképzési rendszer által várhatóan kikényszeríti a szükséges szervezeti átalakulásokat, a hatékonyságjavulást, és megakadályozza a forráskivonást és keresztfinanszírozást, megteremti a stabil színvonalas gazdálkodás pénzügyi alapjait.

- Az árakban érvényesíteni kell a vízbázisvédelem költségeit és fokozatosan az elmaradt és szükséges pótlás fedezetét is, valamint biztosítani kell a szolgáltatás pénzügyi fenntarthatóságát. Törekedni kell a fogyasztók (lakosság, ipar, közület) közötti indokolatlan megkülönböztetések csökkentésére.

- A díjtámogatási rendszer átalakítása fontos annak érdekében, hogy a szociálisan rászorulók képesek legyenek a szolgáltatásokat megfizetni.

A VKI követelményei (a víziközmű szolgáltatások pénzügyi megtérülésének biztosítása és a megfelelő vízápolítika kialakítása) akkor tudnak megvalósulni, ha a tervezett víziközmű törvény, vagy a vízgazdálkodási törvénymódosítás és a kapcsolódó vízápolítás és intézményrendszer fejlesztése VKI konform módon valósul meg.

A 7. fejezetben bemutatásra került a prognosztizált vízjövedelem és a megfizethetőségi mutatók várható alakulása. E mutatók alakulása igazolja, hogy a teljes pénzügyi költségmegtérülés tényleges megvalósítása csak fokozatosan történhet. Az elmaradt rekonstrukciók megvalósítása nemcsak a szolgáltatási biztonság és a pénzügyi fenntarthatóság miatt fontos, hanem vízvédelmi szempontból is elengedhetetlen. Az elmaradt rekonstrukciók megvalósítására hosszú távú finanszírozási stratégiát kell kidolgozni, beleértve az EU-s és állami támogatások igénybevételét.

A mezőgazdasági vízszolgáltatások pénzügyi költségeinek teljes megtérülését a vízápolítika hosszú távú céljaként célzó, mely fokozatosan, a társadalmi, gazdasági, szervezeti, nyilvántartási, ellenőrzési feltételek megteremtésével párhuzamosan érhető el. A cél érvényesítésének összhangban kell haladnia a mezőgazdaságra vonatkozó hazai és EU-s ágazati célkitűzéseket.

Ugyanakkor a mezőgazdasági vízszolgáltatások költségmegtérülésének érvényesítése akkor lehetséges optimális módon, ha a területi vízgazdálkodás egészének szervezeti, finanszírozási és érdekeltségi rendszere is átgondolásra, fejlesztésre, összehangolásra kerül. Jelenleg a VKI a
területi vízgazdálkodás problémáinak feltárásában egy szempontrendszer, ami segítséget ad a területi vízgazdálkodás által nyújtott szolgáltatások és finanszírozási hátterüket tisztázására.

Az első lépés a vízrendszerek köz és magánérdekű feladat ellátásának a lehatárolása kell legyen, ami a továbbiakban alapot adhat a finanszírozási terhek megosztására (a működési és fenntartási költségek esetében is). A költségek fedezetének biztosításához tartozik az egységes szemléletű és tartalmú árképzés kialakítása.

A környezetköltségek – vízterhelési díj, talajterhelési díj – már bevezetett fajtáit megdolgoztuk, azok módosítása javasolt (központi adóként történő elvonás, díjmértékek, visszaigénylés rendszere). A duzzasztásokkal kapcsolatban megfogalmazott minimális ökológiai elvárások (pl. hosszúirányú átjárhatóság és vízjárás szabályozás) érvényesítése érdekében e feltételek teljesítését be kell építeni a megújuló energiaforrásokból termelt villamos áram számára biztosított kedvezményes kötelező átvétel feltételei közé (KÁT rendelet).

A belterületi vízvisszatartást elősegítő finanszírozási rendszer kialakítása, annak érdekében, hogy a közösségi rendszereket feleslegesen terhelők által okozott többlet költségeket vissza lehessen terhelné az érintettekre a szükséges alkalmazkodás ösztönzése érdekében.

A halastavak ökológiai szolgáltatásai, illetve közérdekű feladatainak elismerése a szolgáltatási díjakban, a vízkészlet-járulék mértékében és a támogatásokban.

Egyéb (pl. gazdasági célú tározás, duzzasztás, hajózás vízhasználatokra új gazdasági szabályozó eszköz bevezetése, az erre irányuló vizsgálatok eredményeinek függvényében.

Hosszú távon a megfelelő földhasználati arányok kialakítására vonatkozó komplex piacli alapú gazdasági ösztönző rendszer megalapozása szükséges (kvóta rendszer megvalósítása), ennek előkészítésébe az érintetteket be kell vonni.

Készletköltségek
A vízkészlet-járulék rendszer továbbfejlesztésének fő irányai:

- A leginkább kihasznált készletek esetén a felhasználás lehetőségének megőrzése és a hatékony felhasználás biztosítása;
- A mennyiségi szempontból már túlhasználatot mutató készletek esetében a gazdasági tevékenységek céljára tervezett kitermelési jogok versenyelvű allokációs mechanizmusának kialakítása (pl. termálvizek és más szűkös felszíni és felszín alatti készletek esetében). A bevezetéshez szükséges feltételek megerősítése, így például az adott készletre szóló kitermelési jogok pontos nyilvántartása, a jogok alapján történő kitermelés mennyiségének pontos és naprakész figyelemmel kísérése, az illegális kitermelések felszámolása, a vízházatartás kedvezőtlen változása esetén a kitermelési jogok korlátozása (mely feltételek megteremtése e javaslat e részétől függenlenül is része az intézményi háttér szükséges megerősítésének);
- A kihasználhatatlannak kapacitásokat mutató, de növekvő igénybevételű készletek esetén az ésszerű használat érvényesítése (réteg, karszt és partiszűrésű vízbázisok);
- A kihasználhatatlannak felszíni vízkészletek esetén a díjtagelek időszaktól függő differenciálása, a gazdasági érdekeltesség hiányából fakadó használat csökkenés közvetett, készlet hatásainak mérséklése;
- Vízkészletjárulék bevételek felhasználása VKI céljait szolgáló vízgazdálkodási fejlesztésekhez, a VKI állami feladatainak a készlet használatok és a terhelések nyomonkévetésének megerősítésére (monitoring, adatgyűjtés, ill. feldolgozás, ellenőrzés), az ehhez elengedhetetlenül fontos folyamatos finanszírozás biztosítására, illetve a tisztán hazai forrásból megvalósítandó fejlesztések támogatására, a különböző szintű vízgyűjtő-gazdálkodási tanácsok bevonásával;
A vízbázisok biztonságba helyezésére, illetve ivóvízbiztonsági intézkedések
finanszírozására lehessen a víz- és talajterhelési díj rendszerhez hasonló módon,
közvetlenül visszaforgatni a fizetendő díjból, mert ez a feladat finanszírozási problémák
miatt nagyon lassan halad;

Az elmúlt években a mezőgazdasági vízhasználatok járulékmennyességéből következő
adatszolgáltatási gyakorlat megváltozása miatt a készletek használatának nyomon
követése (számos részterületen) kérdéssé vált. Korrigáló lépések ezért ezen a
területen is szükségesek (minimális, de nem nulla díjtételek).

8.1.7 Pénzügyi ösztönök (támogatások) alkalmazása

A források rendelkezésre állásának kitüntetett szerepe van a pénzügyi ösztönzőknek, elsősorban
az EU támogatások felhasználása területén, várhatóan e forrásokból le száll a finanszírozható a
vízgyűjtő-gazdálkodási tervek meghatározott műszaki intézkedések jelentős része. A pénzügyi
össztönzők pozitív ösztönzőknek tekinthetők, amelyek csak bizonyos esetekben alkalmazhatók,
mivel a szennyező fizet elv és költségmegtérülés alkalmazása a VKI szerint is alapkövetelmény.
Ezért elsősorban állami, önkormányzati fejlesztések esetében alkalmazható, illetve alacsonyabb
műszaki költségekkel az EU döntésetsétől függ. Jelenleg több beruházás esetében problémát jelent a támogatási rendszerek szétszakadást, a
műszaki költségek nélkül valósítható meg. Ilyenek elsősorban a tulajdonjogi korlátozásokat, tiltásokat
tartalmazó eszközök, illetve a pénzügyi forrásokat igénylő állami, önkormányzati építkezés
és rehabilitációs projektek, fenntartási feladatok. A javasolt pénzügyi források többsége közösségi
forrás, melynek összege és rendelkezésre állása 2014 utáni finanszírozási időszakra az EU
követelmény központilag koordinált, szigorú forráskoordináció valósuljon meg,
a forrás felhasználási szabályok támogassák a komplex megközelítéseket (pl. a közös
vidékfejlesztési, természetvédelmi, energetikai, vízrendezési feladatok egy projektben
belüli megvalósíthatóságát),
a döntéshozatalban jelenjennek meg a helyi (regionális) igények,
a finanszírozás legyen biztosított az állami és az önkormányzati (pl. önrész kérdése) projektek esetén is.

8.1.8 Kutatás, fejlesztés

A kutatás-fejlesztés és innováció területén többek között elő kell mozdítani a területi és a települési
vízgazdálkodás, a szennyezések kezelésére, a vízi ökológia és kémia, a felszín alatti vizek használatával
összefüggő kérdések, a védett természeti területek és a víz kapcsolata, az éghajlatváltozás, a
gazdasági, társadalmi elemzések témakörében végzett alkalmazott K+F tevékenységet. Célzott
kutatási feladatok elvégzésére van szükség a terhelések/emberi beavatkozások és ezek hatása
közti összefüggések megismerésére, vízhatékonysági ipari technológiák és víztakarékos öntözési
eljárások kidolgozására és elterjesztésére, valamint a veszélyes anyagokkal kapcsolatos
ismeretek bővítésére. Kiemelten fontos a minősítési, állapotértékelési rendszerek fejlesztése.
8.1.9 Képességfejlesztés, szemléletformálás

A VKI alapján a tagállamoknak biztosítaniuk kell az összes érdekelt fél bevonását nemcsak a vízgyűjtő gazdálkodási tervek elkészítésébe, felülvizsgálatába és korszerűsítésébe, hanem az irányelv teljesítésébe is. Ehhez elengedhetetlen az összes létező eszköz, lehetőség összehangolt felhasználása. Ezt a folyamatot fogja segíteni a Vízügyi Információs Központok működtetése, és szükség van a környezeti információk nyilvánossá tételére vonatkozó intézkedésekre is.

Javaslatok

♦ Felsőfokú szakképzés fejlesztése: A cél olyan korszerű természettudományos szemlélettel és ismeretanyaggal rendelkező műszaki felsőfokú végzettségű szakemberek képzése, akik elsősorban a vízügyi szolgálatban és a környezetvédelem, valamint az agráríum egyes területein mind az operatív munkában, mind az alap- és alkalmazott kutatási feladatok megoldásában képesek magas színvonalon, tevékenyen részt venni.

♦ Szaktanácsadás fejlesztése: Szaktanácsadó rendszerek, hálózatok kialakítása, a meglévők fejlesztése a zöldhatóság, KÖVIZIG-ek, NPI-k, MgSZH, kistérségek, civil szervezetek (pl. MME, vagy MAKE) bázisán.

♦ Demonstrációs projektek megvalósítása: A VKI által érintett EU és egyéb támogatási lehetőségek (intézkedések) mindegyikében 1-2. "VKI célokat megvalósító" demonstrációs projekt megvalósítása és közkincscé tétele szükséges a jó gyakorlatok elterjesztése érdekében.

♦ Tájékoztatás, nyilvánosság: A víztestekre vonatkozó információk (állapot, főbb terheléseket okozó) nyilvánosságra hozatala szükséges mindenként számára könnyen elérhető és közérthető módon (pl. az ún. „naming and shaming” módszer alkalmazásával).

♦ A VKI-val és a vizek fenntartható használatával kapcsolatos környezeti nevelés, oktatás fejlesztése.

♦ Képzések, tréningek szervezése a VKI végrehajtásában érintett szakemberek, hatóságok, döntéshozók és civil szervezetek számára

♦ Tanúsítványok, címzés szélesebb körű alkalmazása a fenntartható vízhasználatok, vízarkerékos technológiák és eljárások terén

♦ A VKI-val kapcsolatos tervezési munkában és döntéshozatali eljárásokban a társadalmi részvétel erősítése

♦ Civil szervezetek szerepének növelése a szemléletformálásban. Szervezett szemléletformáló célú együttműködési programok kialakítása a médiumokkal

♦ A kialakításra kerülő jó gyakorlatok terjesztése céljából egy kommunikációs stratégiát kell kidolgozni és megvalósítani.

8.2 Tápanyag- és szervesanyag terhelések csökkentését célzó intézkedések

A tápanyag és szervesanyag terhelések csökkentését célzó intézkedések a kommunális és ipari szennyvízbevezetések, illetve a talajba szikkasztott szennyvizek; a zöldegeg- és gyümölcs-ültetvényekről, valamint az intenzíven művelt szántóföldekről történő bemosódás (beszivárgás, erózió és belvíz levezetés); a pontszerű (potenciális) szennyezőforrásként jelentkező állattartó telepek; az üledékből származó belső terhelés, illetve az átfolyásos és oldaltározók halászati hasznosításából származó tápanyag bevitelt mérsèkli intézkedéseket foglalja magában.
8.2.1 Településekről összegyűjtött kommunális szennyvizek elvezetése, tisztítása, elhelyezése

A felszín alatti vizek szennyezésének, illetve a közegészségügyi kockázatoknak csökkentése érdekében szükséges a szennyvizek megfelelő gyűjtése és kezelése valamely gazdaságosan megvalósítható szennyvízelhelyezési móddal, beleértve a szennyvíziszapok ártalommentes kezelésének biztosítása is. A szennyvizek elvezetése és befogadóba történő bevezetése során figyelembe kell venni a befogadó, elsősorban felszíni víz terhelhetőségét, különösen a kis vízhozamú, lassú folyású, és/vagy időszakos vízfolyásoknál, melyek a koncentrált terhelésre különösen érzékenyek. Körültekintően kell eljární, mert ez az intézkedés jórészt az egyetlen, amelynek a VKI szempontjából kedvezőtlen hatásai is lehetnek, hiszen a terhelést, ha kisebb mértékben is jellemzően egyik víztestről a másikra helyezi át. Az intézkedések hozzájárulnak a tápanyag és szervesanyag terhelések mérsékléséhez a megfelelő szabályozási környezet kialakításával, amelyek költséghatékonyak és gazdaságosak, és biztosítják a létrehozott rendszerek hosszútávú és biztonságos fenntartását.

Felépítők:
KvVM, ÖM

Végrehajtásban érintettek:
- víziközművek (szolgáltatók, önkormányzatok, állam, mint tulajdonos)
- szennyvízkibocsátó (lakosság, ipar)
- szennyvíziszap hasznosítók (mezőgazdaság, energiaipar, közszolgáltatók stb.)

a) jelenleg érvényben lévő intézkedések

Környezetminőségi határértékek nitrátra (FAV Irányelv): Az EU által kötelezően előírt Irányelv célja, hogy a felszín alatti vizeket megvédje a szennyezésektől és az állapot romlásával szemben. A direktíva a felszín alatti víz nitrát tartalmára minőségi előírást határoz meg, amely maximum 50 mg/l lehet, és egyben megtiltja a szennyezőanyag-koncentráció jelentős és tartós emelkedését. A jogharmonizáció 2008-ban megtörtént.

Szennyvíz-iszap mezőgazdasági felhasználásának szabályozása (Szennyvíz-iszap Irányelv): A mezőgazdaságban csak megfelelően kezelt szennyvíziszap helyezhető el, a jogszabálynak meghatározott módon, mértékben és területen. A Szennyvíz Program alapján ugyanakkor gondoskodni kell a szennyvíztisztító telepekől kikerülő kezelt szennyvíziszap minél nagyobb

[12] Lakosegyenérték (LE): A település egy lakosa egy lakosegyenértéket képvisel. Mivel azonban a keletkező szennyvíz nem csak emberi (lakossági), de ipari vagy intézményi eredetű is, szükség van ezeknek a szennyezőforrásoknak a számszerűsítésére is. A becslőt ipari és intézményi szervesanyag terhelést az egy lakosra jutó biológiai oxigénfogyasztással osztják, és ezt, mint lakosegyenértéket hozzáadják a lakosszámhoz.
arányú hasznosításáról, illetve ártalommentes elhelyezéséről. A közeljövőben a Szennyvíz Program előrehaladása következtében a szennyvíziszap mennyisége egyre nagyobb mértékben növekedni fog, miközben a mezőgazdasági felhasználás lehetősége egy bizonyos ponton túl korlátozott.

b) további megvalósítandó intézkedések

Ott, ahol a Szennyvíz Program nem hat megfelelően a felszíni vizek minőségére a megfelelő műszaki intézkedések megvalósulása érdekében, szigorúbb szabályozási intézkedések lesznek szükségesek elsősorban a környezeti célkitűzésekhez igazodó vízszennyezettségi (környezetminőségi és vízminőségi) határértékek alapján, ahol szükséges egyedi határártétek meghatározásával, illetve felülvizsgálatával. Ahol a befogadó terhelhetősége indokolja, szükséges lehet a meglévő szennyvízüzemeltető telep hatásfokának növelése; a természetközeli utótisztítás (pl. nyárafás tisztítás, talajba történő szennyvízkibocsátás) megvalósítása, a terhelhetőség szempontjából a jelenleginél kedvezőbb befogadóból történő szennyvíz-atvezetés, vagy az olvadalmi szennyvíz más környezetkímélő elhelyezése. A kommunális hálózatot túlterhelő ipari eredetű bevezetések csökkentése érdekében, a technológia kiegészítése (előtisztítás), vagy önálló szennyvíz-tisztító létesítése válhat szükségessé.

Több, hazánkban is érvényben lévő közösségi irányelv előírása korlátozza a tápanyagok koncentrációját a felszíni vizekben. A Duna vizsgálatok eredményei azonban azt mutatják, hogy a felszíni vizek eutrofizációjának megállítása érdekében a foszforbevitel további korlátozása szükséges a mosó- és mosogatószerek foszfortartalmának mérséklésével.

A Szennyvíz Program keretén belül megvalósuló csatornázás és egyedi szennyvízkezelés és elhelyezésen túl egyes, a Szennyvíz Programban nem szereplő kisebb településeken és üdülőterületeken szintén szükséges lehet vízminőségvédelmi szempontból csatornázásra vagy olyan szakaszú, gazdaságosan megvalósítható egyedi megoldások alkalmazására, amelyek nem veszélyeztetik a talajvíz minőségét. Az egyedi szennyvízkezelés elterjesztésének elősegítése érdekében szükséges a működtetési háttér megteremtése. További feladat a szennyvíztisztító telepek alkalmassá tétele a települési folyékony hulladék fogadására. A meglévő csatornák hálózatai esetében biztosítani kell a kapacitás és hatékonyság növelését a kötelező rákötés előírásával, illetve a csatornarendezések megvalósulásának elősegítését az árszabályozás fejlesztésével, illetve állami támogatások biztosításával.

A szennyvíziszapok megfelelő elhelyezése és hasznosítása jövőben kulcsfontosságú feladat lesz, hiszen a lerakás lehetősége a vonatkozó hulladékos szabályok szerint megszűnik. Mivel a szennyvíziszapok mezőgazdasági kihelyezése meghatározott szennyezettség esetén korlátozott, alternatív hasznosítási megoldások (energetikai, rekultivációs stb.) preferálása is szükséges. A
jelentős mennyiség miatt a szennyvízítisztító telepet üzemeltető önkormányzatoknak a szennyvíziszap megfelelő kezelésére és elhelyezésére vonatkozóan az önkormányzatok megújuló energia hasznosításra vonatkozó intézkedési tervének részét képező intézkedési program kidolgozása szükséges.

A kommunális szennyvizek kezelését szolgáló rendszer megfelelő kiépítése jelentős költségigényű, ezért szükséges támogatási források biztosítása a Szennyvíz Program befejezéséhez, illetve ezt követően további szennyvízkezelési feladatokra. A támogatási rendszer be kell építeni (pl. vízminőségvédelmi, klimavédelmi szempontból legjobb változatok meghatározása, szennyvíziszapok energetikai, mezőgazdasági, rekultivációs stb. hasznosításának pénzügyi ösztönzése).

Az illegális szennyvízbekapcsolók megszüntetésére, amelyek továbbra is problémát jelentenek, a hatósági ellenőrzés fokozása (felderítés), szankciók szigorítása, illetve az önkormányzati hatósági ellenőrzési eljárásrend előírása szükséges.

8.2.2 Településekről származó egyéb szennyezésekkel kapcsolatos intézkedések

A településeken a település infrastruktúra kialakításával és működtetésével kapcsolatos tevékenységek (települési hulladékgazdálkodás, belterületi csapadékvíz elvezetés, egyéb települési tevékenységek) hatással vannak elsősorban a felszín alatti vizek állapotára, de befogadóként a felszíni vizek állapotára is. A vizek állapota javítása érdekében e tevékenységek VKI követelményeknek való megfelelését biztosítani kell.

Felülők:
KvVM, ÖM, FVM
Végrehajtásban érintettek:
 TRANSZPORTJÁG
- önkormányzat, községszolgáltatók
- lakosság (környezethasználó)

a) jelenleg érvényben lévő intézkedések

A hulladéklérakás jelenleg már olyan szigorúan szabályozott, hogy onnan jelentős mennyiségű veszélyes anyag (elvileg) nem kerülhet ki a megfelelő műszaki védelemmel létrejövő hulladéklérakó esetében. A belterületi vízrendezés az önkormányzat felelőssége, de nem kötelező feladatként. A hazai költségvetés EU hozzájárulással pénzügyi ösztönzést biztosít az önkormányzatok számára a szükséges beruházások megvalósítására (ROP-ok).

A jelenlegi jogszabályozás szerint a belterületi vízrendezés az önkormányzat felelőssége körébe tartozik, de nem kötelező feladatként. A hazai költségvetés EU hozzájárulással pénzügyi ösztönzést biztosít az önkormányzatok számára a szükséges beruházások megvalósítására (ROP-ok). A belterületi csapadékvíz elvezetése számos helyen megoldatlan, bizonyos esetekben felszín alatti vizekben problémát okozhat, ahol megalakul, ott a jelenlegi gyakorlat szerint még mindig alapvetően a vizek lehető leggyorsabb elvezetését tekintik a legfontosabb célnak. A települési diffúz szennyezések megakadályozására az önkormányzatok kötelezettsége állattartási rendelet megalakítása, illetve a települési környezetvédelmi program részeként
b) további megvalósítandó intézkedések

Problémát jelentenek a már bezárt, nem túl szigorú, előírásoknak megfelelően épített lakossági, valamint az illegális hulladéklerakók. Az intézkedés a hulladéklerakók csurgalékvizének felszín, vagy felszín alatti vizekbe jutásából származó problémák (elsősorban veszélyes anyagok vizekbe jutásának megakadályozását) megoldását segíti elő. Elhagyott hulladék összegyűjtése és lerakókba szállítása is szükséges, különösen a vízváratlan területekről. A Hulladék Keretirányelv szabályozásának módosulása miatt, a települési folyékony hulladékra vonatkozó nemzeti szabályozás felülvizsgálata szükséges.

A VGT szempontjából a belterületi csapadékvíz gazdálkodásnak olyan térségekben van jelentősége, ahol a belterületéről származó terhelés csökkentésére vízminőség-védelmi okokból is szükség van (pl. a Balaton partmenti településeinek, sérülékeny felszín alatti vizek esetében). Előnyben részesítendők azok a települések, ahol már van csatornahálózat. A belterületi lefolyás szabályozásának többféle módja ismeretes, melyek részben a lefolyás szennyeződését csökkentik (tározók, hordalékfogó műtárgyak, szűrőmezők), részben a területi vízvisszatartást segítik elő (beszivárogtatás), de ezek nem veszélyeztethetik a felszín alatti vizeket. Amennyiben a természetes állapotú befogadó medre nem elég nagy ahhoz, hogy a vízgyűjtőre esett csapadékok egy hullámban rövid idő alatt lemezze, szükséges lehet puffer tározók kialakítása, amelyek a csapadékvíz lefolyását késleltetik, és a befogadót mentesítenek a lökésszerű szennyezőanyag terheléstől. Vizsgálni szükséges továbbá a csapadékvíz mennyiség lefolyását késleltetendő képes növényzetettel telepített tetők ún. zöldtetők kialakításának lehetőségét is. A csapadékvíz-gazdálkodási rendszer ökológiai és vízminőségvédelmi szempontú átalakításához szükséges egy Országos Települési Csapadékvíz-gazdálkodási Program kidolgozása, beleértve az ezzel kapcsolatos jó gyakorlat meghatározását. Ennek keretében vizsgálandó a belterületi csapadékvíz gazdálkodás kötelező önkormányzati feladattá tétele.

A felszín alatti vizek védelme érdekében a települési termőterületeken (kertek, zárt kertek, parkok) a műtrágyázás, trágyázás, valamint a növényvédelem környezetkímélő módjának, ütemezésének megvalósítása szükséges összhangban a felszínű vízelvezetés módjával (belterületi jó vízvédelmi gyakorlatok kialakítása). A közterületek tisztításának, tisztántartásának megvalósítása, valamint környezetkímélő temetkezési helyek kijelölése és létrehozása szükséges. Az önkormányzati utak vízelvezetésének jó gyakorlat szerinti megoldását lásd a 8.3. fejezetben. A települési környezetvédelmi programok felülvizsgálata szükséges a jó vízgazdálkodási, vízvédelmi gyakorlat kialakítása érdekében, amelyhez előzetesen szakmai módszertani útmutatót kell készíteni.

8.2.3 Ipari forrásból származó közvetlen szennyezetek

Az ipari használt- és szennyvíz közvetlen bevezetéseket ebben az alfejezetben a szerves- és a tápanyagterheléssel összefüggésben tárgyaljuk, de a veszélyes anyagok szennyezésének csökkentésére is vonatkoznak, lásd lentebb a 8.3. fejezetben.

Felelősök:
NFGM, KHEM, KvVM

Végrehajtásban érintettek:

Környezethasználók (ipar, egyéb gazdasági szektorok)
a) jelenleg érvényben lévő intézkedések

Vízszennyező anyagok közvetlen bevezetésének szabályozása kibocsátási határértékek meghatározásával technológiai és területi határértékek figyelembevételével, szükség esetén egyedi határértékekkel történik.

A környezetminőségi előírásokra (elsőbbségi anyagokra) vonatkozó új, 2008-as EU Irányelv hazai jogharmonizációja, valamint ez alapján a kibocsátás szabályozás továbbfejlesztése szükséges, amelynek határideje 2010. július 13-án.

b) további megvalósítandó intézkedések

Továbbiakban is szükséges a pontoszerű bevezetések által okozott szennyezések csökkentése. Felül kell vizsgálni a kibocsátások és adatszolgáltatásokra vonatkozó jelenlegi jogszabályokat, annak érdekében, hogy a felszíni vizekben előforduló szennyező anyagok forrásai azonosíthatók legyenek. A szükséges intézkedés elsősorban szabályozás jellegű, a műszaki megvalósulást alapvetően a kibocsátónak előírások betartásához szükséges szennyezés-csökkentési, technológiai beavatkozásai jelentik. Az intézkedés jelentheti előírt technológia alkalmazását (BAT) vagy a kibocsátott szennyezővé vonatkozó határérték betartását, valamint a kibocsátás ütemezésére vonatkozó előírásokat (pl. tározó leeresztés). Európai Unió környezetminőségi határértékek hazai átültetése 2010-ben megvalósul (emissziós leltárak készítése, keveredési zóna kijelölés). A környezeti célkitűzések elérése érdekében további intézkedések szükségesek az engedélyek felülvizsgálatára, BAT-ok felülvizsgálatára, valamint a REACH rendelet végrehajtására, a megfelelő hosszúságú türelmi idő biztosítása mellett.

Mivel az ipari üzemek működése során előfordulhatnak balesetek, hirtelen szennyezések, ami az élővilág pusztulását idézheti elő, ezért, amennyiben ez a veszély fennáll az ipari létesítmények mellé olyan puffertározókat célszerű létesíteni, amelyek havária esetben képesek tárolni az esetleg mérgező anyagokat is tartalmazó szennyvizeket. Továbbra is fokozottan támogatni szükséges a VKI céljait szolgáló vállalati technológia-fejlesztéseket.

8.2.4 Mezőgazdasági tevékenységből származó tápanyag és szervesanyag terhelések csökkentése, illetve környezetfenntartó szerepének növelése

A szennyvizek hatékonyabb kezelésével egyidejűleg szükséges a mezőgazdasági tevékenységből származó tápanyag és szervesanyag terhelések csökkentése. A felszíni vizek mezőgazdasággal kapcsolatos vízminőség problémái főként a vízvisszatartás hiányából adódó eróziós bemosódásra, a tápanyagban gazdag belvízek bevezetésére és a vízfolyásokat ővező puffer zónák hiányára vezethetők vissza, ezért az intézkedések ezeknek a hatásoknak a mérséklését célozzák. A vizek visszatartása tehát elsődleges, és nem csak azokban az időszakokban mikor többletvízzel rendelkezünk, hanem az átlagos, vagy a kevés csapadékot is szükséges megtartani (szemben a jelenlegi gyakorlattal). A felszín alatti vizeknél a nitrátszennyezés jelenti a legnagyobb gondot, melynek területi előfordulása jellemzően inhomogén. A megelőző problémák (melyek sok esetben még a múltbeli elterhelésekre vezethetők vissza) csökkentése és a felszín alatti vizek jövőbeli megóvása érdekében ésszerű tápanyag-gazdálkodásra van szükség.

Figyelembe kell azonban venni, hogy a mezőgazdaság az élelmiszerbiztonság és a foglalkoztatottság terén stratégiai jelentőségű ágazat. A táji adottságokhoz alkalmazkodó, multifunkcionális mezőgazdaság azonban mindemellett az egyik legfőbb karbantartója lehet a tárónak és az ökoszisztéma szolgáltatásoknak. A VKI végrehajtása során az agrárium multifunkcionális jellegét kell alapul venni, és a jelenlegi savokkal erősebben támogatni kell a mezőgazdaság környezetfenntartó szerepét, illetve a mezőgazdasági tevékenységből származó szennyezéseket a megfelelő szintra szükséges mérsékelni. A vizek szennyezése a termelő
számára sem gazdaságos, mivel a termőterületre kihelyezett tápanyag hasznosulásában érdekelt, ehhez azonban tudatos és szakszerűséget is igénylő tápanyag-gazdálkodás szükséges.

Felelősök:
FVM, KvVM

Végrehajtásban érintettek:
- (növénytermesztést, állattenyésztést végző) mezőgazdasági gazdálkodók
- belvízcsatornák és belvíztározók kezelője

a) jelenleg érvényben lévő intézkedések

Nitrát Akcióprogram keretében a vizek nitrát tartalma, valamint a veszélyesség mérlegelése alapján kijelölésekre kerültek a **nitrát-érzékeny területek**. Az akcióprogram második fázisa zajlik a 2008-2011 közötti időszakban, amelynek célja, hogy a nitrát-érzékeny területeken a vizek nitrát-koncentrációja 50 mg/l alatt legyen. A nitrát-érzékeny területeken bevezetésre került a kötelezően alkalmazandó „helyes mezőgazdasági gyakorlat”. E szabályok betartása a közvetlen mezőgazdasági kifizetések feltétele.

A Program tartalmazza állattartótelepek trágyatárolásának, elhelyezésének korszerűsítését is. Az egységes környezethasználati engedélyköteles tevékenységi körben szintén előírás a nagy állattartótelepek korszerűsítése. Jelenleg az állattartó telepek (9334 db) mintegy 13 %-a rendelkezik megfelelő trágyatárolóval, a nagyok esetében is az arány mindössze 22 %. Az állattartó telepek korszerűsítésére EU támogatási forrás igényelhető, amelynek során mintegy 1000 állattartó telep korszerűsítése valósul meg. Az állattartó telepekre vonatkozó szigorú trágyatárolási szabályok betartását 2009-től nem csak hatósági ellenőrzés keretében vizsgálják, hanem a „kölcsönös megfeleltetés” rendszerén belül is. Ezek eredményeként a nagy állattartó telepek esetében a szükséges korszerűsítések várhatóan várhatóan a VKI első időszakában megtörténnek, de a kisebb állattartó telepek esetében a jogszabályban vállalt határidő módosítása lesz szükséges.

Az erózió által érintett területek esetében a közvetlen mezőgazdasági közvetlen kifizetések feltétele a helyes mezőgazdasági és környezeti állapot (HMKÁ) betartása, amelynek egyik fő eleme a 12 % lejtőség feletti területeken betartandó vetésváltásra és agrár-technológiai/technikai eszközök alkalmazására (szintvonalra merőleges művelés vagy talajtakarás valamely módozata) vonatkozó szabályok.

Nitrát-érzékeny és az erózió által veszélyeztetett területeken az agrár-környezetvédelmi (AKG) célkitűzések megvalósulását az állam pénzügyi támogatásokkal segíti elő EU források igénybevételével, az előbbi az célprogramokon keresztül többletpontokkal történő előnyben részesítéssel, az utóbbit zonális célprogramon keresztül.

Összességében megállapítható, hogy a HMKÁ kötelmi előírásai ma is komoly színvonalat képviselnének – ha ezek betartásában sikerül megközelíteni az optimális jogkövetői magatartást országos szinten, az minden bizonnal számos vízminőségi és ökológiai probléma megoldásához hozzájárul.

b) további megvalósítható intézkedések

A dombvidéki vízgyűjtőkön az erózió szempontjából mintegy 440 ezer ha mezőgazdasági terület veszélyeztetett, ebből fokozottan érzékenyenek tekintetben közeltőleg 130 ezer ha, ezen belül is a kiemelt fontosságú állóvizek (Balaton, Velencei-tó) és a dombvidéki vízfolyásokon létesült (vagy a jövőben létesíttendő) tározók fedett vízgyűjtőkön (kb. 50 ezer ha) található mezőgazdasági területek.
Mivel a terhelés csökkentésében (a jelenlegi kismértékű – de növekvő - trágyahasználat mellett) a tápanyag bevitel korlátozásánál hatékonyabb a terjesdési folyamatokba történő beavatkozás, kiemelt szerepe van a művelési mód- és ágváltást ösztönző, környezettudatos gazdálkodást elősegítő intézkedéseknek. Az alkalmazott eszközöktől függően a költséghatékonyság eltérő: erdősítéssel 45-70%-os, szintvonals-sávos műveléssel 20-55%-os, talajtakarással (mulcoslal) 30-60%-os, tábla melletti szegélyek kialakításával 20-30%-os, a módszerek kombinálásával pedig 55-70%-os csökkennéz érhetünk el. A tervezett intézkedések több probléma kezelésére alkalmas komplex lehetőségeket jelentenek.

Síkvidéki területeken a mezőgazdasági földhasználatból származó terhelés azokon a területeken lehet jelentős, ahol belvízelvezetés történik. Ebből adódóan az intézkedések között a belvizek területen való visszatartása a legfontosabb. A felszíni vizekben a tápanyag terhelés mérséklése területeken. Ahol a belvízelvezetés nem váltható ki a fenti intézkedésekkel, lehet jelentős. Síkvidéki területeken a mezőgazdaság/területeken hatékony víz- és ezzel egyidejűleg tápanyagterhelés visszatartó intézkedés, de nöhet a talajvíz szennyezésének veszélye. A vízvisszatartás történhet oly módon, hogy a mély fekvésű területekről nem vezetek el a vizeket, ezáltal a területek fokozatosan vizes élőhellyé alakulnak, de támogatandó az erdő- és gyeplű művelési ágra történő áttérés is a kevésbé belvíz-veszélyes területeken. Ahol a belvízelvezetés nem válttható ki a fenti intézkedésekkel, a belvíz tározókba vezethető.

Amennyiben a vízfolyás, illetve tó medre és a mezőgazdasági terület között nincs természetes vagy mesterséges védelmű, a csapadék-események és úszó, ahol belvízelvezetés történik. Ebben az esetben a talajvíz képessége, hogy gyorsan beavatkozz a környező erdő-teljesítményrendszerrel 45-70%-os, szintvonalas-sávos módszerekkel, ahol belvízelvezetés történik. Ebben az esetben a talajvíz képessége, hogy gyorsan beavatkozz a környező erdő-teljesítményrendszerrel 45-70%-os, szintvonalas-sávos módszerekkel, ahol belvízelvezetés történik. A partmenti vízvédelmi puffersáv 13 a lebegőanyag kiszűrésével és kiülepítésével, a növényi tápanyagok felvételével, illetve feldolgozásával ezt a folyamatot fejezi.

A vizek ökológiai állapota romlásának megelőzése, illetve javítása érdekében a vízfolyás és belvíz-érzékeny területek rendszerének bővítésére, kiegészítésére van szükség: nitrát- és erózió-érzékeny területek felülvizsgálata, belvíz-en erdővé válása, valamint ún. partmenti vízvédelmi puffersáv kijelölése, a kötelező és önkéntes előírások meghatározása a területi és időbeli prioritások meghatározásával és a rendelkezésre álló források figyelembe vételevel. Szükséges továbbá a belvíz-elvezető rendszer vízvisszatartási szempontok szerinti átalakítására vonatkozó jó gyakorlatok meghatározása is.

A vizek jó állapotának elérése érdekében kétszintű szabályozás bevezetésére van szükség (kötelező alapszintű és önkéntes választható földhasználati előírások). Az alapszintű előírások olyan mezőgazdasági tevékenységekre vonatkozó korlátozásokat rögzítenek, melyek megakadályozzák a vizek állapotának további romlását. Az alapszintű követelményrendszer kidolgozásakor a hatályon lévő előírásokat szükség esetén ki kell egészségesen és a belvíz-en erdővé válása, valamint ún. partmenti vízvédelmi puffersáv kijelölése, a kötelező és önkéntes előírások meghatározása a területi és időbeli prioritások meghatározásával és a rendelkezésre álló források figyelembe vételevel. Szükséges továbbá a belvíz-elvezető rendszer vízvisszatartási szempontok szerinti átalakítására vonatkozó jó gyakorlatok meghatározása is.

A vizek jó állapotának elérése érdekében kétszintű szabályozás bevezetésére van szükség (kötelező alapszintű és önkéntes választható földhasználati előírások). Az alapszintű előírások olyan mezőgazdasági tevékenységekre vonatkozó korlátozásokat rögzítenek, melyek megakadályozzák a vizek állapotának további romlását. Az alapszintű követelményrendszer kidolgozásakor a hatályon lévő előírásokat szükség esetén ki kell egészségesen és a belvíz-en erdővé válása, valamint ún. partmenti vízvédelmi puffersáv kijelölése, a kötelező és önkéntes előírások meghatározása a területi és időbeli prioritások meghatározásával és a rendelkezésre álló források figyelembe vételevel. Szükséges továbbá a belvíz-elvezető rendszer vízvisszatartási szempontok szerinti átalakítására vonatkozó jó gyakorlatok meghatározása is.

A kötelező (alap-szintű) földhasználati előírások mellett önkéntes (emelt szintű) előírások alkalmazásával lehet jelentős javulást elérni a vizek állapotában. Az emelt szintű előírások olyan önkéntesen választható földhasználati modelleket határoznak meg, amelyek a jelenlegi gyakorlathoz képest jelentősen csökkentik a mezőgazdasági tevékenységekből származó terhelést.

13 A partmenti vízmindenős-védelmi puffersáv kialakítása a vízfolyások ökológiai állapotjavításának fontos eleme (részletesen lásd a 8.4.1 fejezetben), de a tápanyag-visszatartásban betöltött szerepük is jelentős.
akár teljesen meg is szüntetik azokat. Az emelt szintű intézkedések esetén az alábbi irányokról lehet szó:

1) A művelési ág megváltozásával járó előírások (elsősorban szántó-gyep, szántó-erdő, esetenként szántó-vizes élőhely konverzió)

2) A művelési mód megváltozásával járó előírások (a kötelező sínthez képest szigorúbb agrotechnikai technológiák)

A belvizek ideiglenes tározásának, mesterséges beszívárgásának feltétele a megfelelő területszerzés (kisajátítással vagy földcserével), vagy a területek ideiglenes „megszerzése” tározás céljára (pl. a terület bérlese a kiesző bevétel és keletkező hátrányok kompenzációjával együttműködési - önkéntes - megállapodások keretében, azokon a területeken, ahol a belvízelőntés gyakorisága alacsonyabb). Az utóbbi előnye, hogy csak a belvizes időszakban szükséges a terület igénybevétele, a többi időszakban a területen a gazdálkodó által környezetkímélő, extenzív gazdálkodás folytatható.

8.2.5 Jó halászati és horgászati gyakorlat kialakítása és elterjesztése

A nem megfelelő halászati és horgászati gyakorlat hidromorfológiai és ökológiai problémákat okozhat a felszíni vízeken, ugyanakkor mint vizes élőhelyek ökológiai, természetiék szerepük sem megkérdőjelehető. Az intézkedések kidolgozása és végrehajtása során a halgazdálkodás, a vízminőség-védelem és az ökológia szempontjainak összehangolása szükséges. (Ez ma nem áll fenn, célszerű ezt az országos szabályozáson keresztül elérni.)

Felelősök:
FVM, KVVM

Végrehajtásban érintettek:
♦ gazdálkodók (halászat), üzemeltetők (horgásztavak)
♦ horgászok (lakosság)
♦ önkormányzatok

a) jelenleg érvényben lévő intézkedések

A halastavi és a horgászati hasznosítás szabályait hazai jogszabályok rögzítik. A hazai vízjogi szabályozás továbbá engedélyezési eljárásra keresztül szabályozza a vizek igénybevételét, használatát és a vízi munkákkal kapcsolatos tevékenységeket. A jó tégazdálkodási gyakorlat kidolgozásra került (de jogszabályba még nem épült be), azonban a halastavi és a horgászati hasznosításra vonatkozó szabályozást ez nem tartalmazza. Ezért a halászattal és a horgászattal kapcsolatosan a VKI szempontjait figyelembe vevő kötelezően alkalmazandó jó gyakorlatok kidolgozására van szükség.

b) további megvalósítható intézkedések

Az intézkedések lényege a jó halászati és horgászati gyakorlatok kidolgozása és megvalósítása. A VKI céljainak teljesítéséhez szükséges jó gyakorlatok - a VKI szempontjai szerint - az érintett víztér (víztest) jellegétől függően eltérnek. A különbségek abból adódnak, hogy a halászati és horgászati hasznosítású víztér (víztest) más-más módon illeszkedik a vizek természettes rendszerébe, és ezt a halászati és horgászati tevékenység során figyelembe kell venni. Ezért külön előírások kidolgozására van szükség:
A körtöltéssel vagy természetes mélyedésekben mesterségesen kialakított halastavakra és horgásztavakra, amelyek a természetes vizekhez a vízbevezetésen és vízleeresztésen keresztül kapcsolódnak, és a leeresztés nem folyamatosan, hanem összel, a vegetációs időszak kivül történik. A szabályozás lényege a halászat és ökológiai szempontok összehangolásával kialakítható jó tágazáldíkos gyakorlat, amelynek figyelembe kell vennie, hogy a leeresztések nem ronthatják a befogadó ökológiai állapotát;

A vízfolyások völgyzárógáttal elzáró és ez által jellegében megváltoztatott szakaszaira, az ún. völgyzárógátas tározókra, ahol a halászati vagy horgászati tevékenység a teljes vízteret érinti (pl. holtágak, tavak, folyók, ahol ezeknek a természetes vizeknek a halászati vagy horgászati hasznosításáról van szó) – a jó gyakorlatnak a víztest jó ökológiai állapotához kell illeszkednie, a halászati, horgászati tevékenység technológiáját ennek kell alárendelni, és ez alól kivételt szintén csak a VKI szabályai szerint lehet tenni.

A fenti jó gyakorlatok nem minden elemükben különbözik egymástól, tehát akár egymásra épülve, a halászat és horgászat „logikája” szerinti szerkezetben is kidolgozhatók, azonban a VKI szemléletéből adódó különbségeket világosan rögzíteni kell. Ebben a megközelítésben a jó tágazáldíkos gyakorlatra vonatkozó javaslatok főként a körtöltéses, mesterséges halastavakra vonatkoznak, de elemei nagymértékben felhasználhatók a horgásztavakra és a völgyzárógátas tározók halászati és horgászati hasznosítására vonatkozó jó gyakorlatok kidolgozásakor is.

A jó gyakorlatok kidolgozásákor, illetve a halászati és horgászati hasznosítást érintő egyéb, (átfogó) intézkedések alkalmazásakor figyelembe kell venni az alábbiakat:

- a tágazáldíkos haltermelés extenzív jellegű;
- a mesterségesen létrehozott körtöltéses halastavak szikvédi területen hozzájárulnak a terület vízhaszantartási viszonyainak javításához, növelve a folyósabályozások és a belvízrendezés miatt lecsökkent, a tájra korábban jellemző vízfelületek nagyságát;
- a halastavakban élőhelyek alakulnak ki, és az ökológiai szempontból kedvező gazdálkodásból (elismert ökológiai szolgáltatásból) adódó jövedelem csökkenést az ökológiai állapot és a halászati támogatási rendszerekhez hasonló módon kell kezelni (kompenzálni);
- a víz tározásához kapcsolódó, más felhasználók számára is hozzáférhető vízkészlet biztosításának költségeit a további felhasználóknak meg kell téríteniük;
- a halastó működtetéséhez szükséges víz árát és a víz biztosításával kapcsolatos szolgáltatási díjakat országosan egységes szempontrendszer szerint kell megállapítani, figyelembe véve a készletek bőségét, minőségét, az igénybevétel időszakát;
- a tápvíz minőségének ki kell elégtetnie a tágazáldíkos igényeit (ezek a követelmények nem lehetnek szigorúbbak a VKI jó ökológiai és kémiai állapotára vonatkozó kritériumoknál), ha mégis, akkor ezt külön jogszabályban kell rögzíteni;
- a szabályozás következtében egyes vízhasználók esetében terheléscsökkentő beruházások megvalósítása válhat szükségessé (a vízminőség-javító halszerkezet telepítése és az ahhoz szükséges műszaki feltételek biztosítása stb.), amelyhez támogatási forrásokat kell biztosítani.
8.2.6 A Tápanyag és szervesanyag terhelések csökkentését célzó intézkedések alkalmazása

Az intézkedések megfelelően kialakított jogszabályi háttér alapján történő alkalmazását foglalja össze a 8-1., 8-2. és 8-3. táblázat, a vízfolyásokra, az állóvizekre és a felszín alatti vizekre.

A táblázatok egyes oszlopainak magyarázata:

- **Előkészítés**: azoknak a víztesteknek a száma, ahol az intézkedés alkalmazása előkészítő vizsgálatokat igényel (ez vonatkozhat az intézkedés víztestenkénti tartalmának pontosításra, esetleg szükségességének igazolására).

- **A környezeti célkitűzés eléréséhez szükséges alkalmazások**: azoknak a víztesteknek a száma, ahol az intézkedés alkalmazására a környezeti célkitűzés elérése érdekében szükség van (az intézkedés elmaradása esetén a jó állapot/potenciál nem érhető el, illetve valószínű a jelenlegi állapot romlása). A táblázat külön mutatja a 2015-ig és azután tervezett alkalmazások számát.

- **Az állapot javítását és fenntartását szolgáló alkalmazások**: az előzőhöz képest itt azok a víztestek jelennek meg, ahol az intézkedés alkalmazására azért kerül sor, mert az intézkedési program vagy a jogszabály az alkalmazást nem a környezeti célkitűzéshez köti, hanem a feltételeket általánosan alkalmazza meg (pl. Szennyvíz Program, Nitrát Akcióprogram, illegális tevékenységek megszüntetése). Ezeket az intézkedéseket tehát olyan víztestek esetében is alkalmazhatják, ahol a környezeti célkitűzés ezt nem igényelne. Természetesen az intézkedés ebben az esetben is hozzájárul a víztest állapotának javításához, csak ennek mértéke a környezeti célkitűzés szempontjából nem szignifikáns. Vannak olyan általánosan alkalmazott intézkedések, amelyek vagy minden potenciálisan szóba jöhető víztesten alkalmazhatók, vagy azok a víztestek, ahol alkalmazni fogják az intézkedést, még nem ismertek. Itt is külön jelennek meg a 2015-ig és a 2015 után végrehajtandó intézkedések.

8-1. táblázat: Tápanyag és szervesanyag terhelések csökkentését célzó intézkedések alkalmazása a vízfolyás víztesteknél

<table>
<thead>
<tr>
<th>Intézkedés</th>
<th>Előkészítés 2012-ig (az érintett víztestek száma)</th>
<th>A környezeti célkitűzés eléréséhez szükséges alkalmazások (az érintett víztestek száma)</th>
<th>Az állapot javítását és fenntartását szolgáló alkalmazások (az érintett víztestek száma)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TA1: Erőzió-érzékeny területeken művelési mód- és művelési ágváltás</td>
<td>5</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>TA2: Nitrát-érzékeny területekre vonatkozó jó mezőgazdasági gyakorlat</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TA3: Belvíz-érzékeny területekre vonatkozó intézkedések (vízvisszatartás a belvízelvezető-rendszert használata nélkül, művelési mód- és ágváltás)</td>
<td>3</td>
<td>Függ az előkészítő fázisról</td>
<td>1</td>
</tr>
<tr>
<td>TA7: Állattartótelepek korszerűsítése, a trágya elhelyezés és hasznosítás megoldása</td>
<td>1</td>
<td></td>
<td>Az összes állattartótelepre.</td>
</tr>
</tbody>
</table>

8. fejezet Intézkedési program
VÍZGYŰJTŐ-GAZDÁLKODÁSI TERV
3-3 Fekete-víz vízgyűjtő

<table>
<thead>
<tr>
<th>Intézkedés</th>
<th>Előkészítés 2012-ig (az érintett víztestek száma)</th>
<th>A környezeti célkitűzés eléréséhez szükséges alkalmazások (az érintett víztestek száma)</th>
<th>Az állapot javítását és fenntartását szolgáló alkalmazások (az érintett víztestek száma)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TE1, TE2, TE3: Települési intézkedések (hulladéklerakók rekultivációja, csapadékvíz elvezetés, jó települési vízgazdálkodási gyakorlat)</td>
<td></td>
<td></td>
<td>Minden településen alkalmazzák.</td>
</tr>
<tr>
<td>F11, F12: Jó halászati és horgászati gyakorlat megvalósítása mesterséges állóvizekben</td>
<td>1</td>
<td></td>
<td>Az összes mesterséges halastóra és horgastóra érvényes. Ennek következtében minden befogadóként szóba jöhető vízfolyás víztestre vonatkozik.</td>
</tr>
<tr>
<td>F13: Jó halászati és horgászati gyakorlat, völgyzárógátás tározókban</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F14: Jó halászati és horgászati gyakorlat természetes vizekben</td>
<td></td>
<td></td>
<td>Az összes halászati hasznosítású vízfolyásra alkalmazzák.</td>
</tr>
<tr>
<td>HA2: Vízfolyások hullámterében/árterén a területhasználat ökológiai és vízminőség-védelmi szempontú kialakítása és fenntartása</td>
<td>28</td>
<td>5</td>
<td>23</td>
</tr>
<tr>
<td>HM4: Üledék egyszeri eltávolítása vízfolyásokból</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SZ1: Szennyvíztisztítás megoldása a Szennyvíz Program szerint</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>SZ2: Szennyvíztisztítás megoldása a Szennyvíz Programban előírtakon felül</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SZ3, SZ4: Szennyvízelhelyezéssel kapcsolatos intézkedések (ipari bevezetések módosítása, illegális bevezetések felszámolása)</td>
<td></td>
<td></td>
<td>Általánosan alkalmazzák, víztestenként nem adható meg.</td>
</tr>
<tr>
<td>PT5: Szűrőmezők kialakítása</td>
<td>1</td>
<td></td>
<td>Egyéb intézkedésekre kapcsolva általánosan alkalmazzák</td>
</tr>
</tbody>
</table>

8-2. táblázat: Tápanyag és szervesanyag terhelések csökkentését célzó intézkedések alkalmazása az állóvíz víztesteknél

<table>
<thead>
<tr>
<th>Intézkedés</th>
<th>Előkészítés 2012-ig (az érintett víztestek száma)</th>
<th>A környezeti célkitűzés eléréséhez szükséges alkalmazások (az érintett víztestek száma)</th>
<th>Az állapot javítását és fenntartását szolgáló alkalmazások (az érintett víztestek száma)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TA1: Erózió-érzékeny területeken művelési mód- és művelési ágváltás</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TA2: Nitrat-érzékeny területekre vonatkozó jó mezőgazdasági gyakorlat</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TA3: Belvíz-érzékeny területekre vonatkozó intézkedések (vízvisszatartás a belvízelvezető-rendszer használata nélkül, művelési mód- és ágváltás)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2015-ig</td>
<td>2015 után</td>
<td>2015-ig</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
</tbody>
</table>
8. fejezet

Intézkedési program

<table>
<thead>
<tr>
<th>Intézkedés</th>
<th>Előkészítés 2012-ig (az érintett víztestek száma)</th>
<th>A környezeti célkitűzés eléréséhez szükséges alkalmazások (az érintett víztestek száma)</th>
<th>Az állapot javítását és fenntartását szolgáló alkalmazások (az érintett víztestek száma)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2015-ig</td>
<td>2015 után</td>
<td>2015-ig</td>
</tr>
<tr>
<td>TA7: Állattartótelepek korszerűsítése, a trágya elhelyezés és hasznosítás megoldása</td>
<td></td>
<td></td>
<td>Az összes állattartótelepre</td>
</tr>
<tr>
<td>TE1, TE2, TE3: Települési intézkedések (hulladékklerakók, csapadékvíz elvezetés, jó települési vízgazdálkodási gyakorlat)</td>
<td></td>
<td></td>
<td>Minden településen alkalmazzák</td>
</tr>
<tr>
<td>FI1, FI2: Jó halászati és horgászati gyakorlat megvalósítása mesterséges állóvizekben</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FI4: Jó halászati és horgászati gyakorlat természetes vízéken</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| HA3: Állóvizek part menti sávjában a területhasználat okológiai és vízminőség- védelmi szempontú kialakítása és fenntartása | | | Az ökológiai célú alkalmazás a szélesseb körű (lásd. 8.7. táblázat).
| HM8: Üledék egyszerű eltávolítása állóvizekből |
| SZ1: Szennyvíztisztítás megoldása a Szennyvíz Program szerint |
| SZ2: Szennyvíztisztítás megoldása a Szennyvíz Programban előírtakon felül: |
| SZ3, SZ4: Szennyvízelhelyezéssel kapcsolatos intézkedések (ipari bevezetések módosítása, illegális bevezetések felszámolása) | | | |
| PT5: Szűrőmezők kialakítása | | | |

8-3. táblázat: Tápanyag és szervesanyag terhelések csökkentését célzó intézkedések alkalmazása a felszín alatti víztesteknél

<table>
<thead>
<tr>
<th>Intézkedés</th>
<th>Előkészítés 2012-ig (az érintett víztestek száma)</th>
<th>A környezeti célkitűzés eléréséhez szükséges alkalmazások (az érintett víztestek száma)</th>
<th>Az állapot javítását és fenntartását szolgáló alkalmazások (az érintett víztestek száma)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2015-ig</td>
<td>2015 után</td>
<td>2015-ig</td>
</tr>
<tr>
<td>TA2: Nitrát-érzékeny területekre vonatkozó intézkedések (művelési mód és művelési ágváltás)</td>
<td>4</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>TA7: Állattartótelepek korszerűsítése, a trágya elhelyezés és hasznosítás megoldása</td>
<td>5</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>TE1, TE2, TE3: Települési intézkedések (hulladékklerakók, csapadékvíz elvezetés, jó települési vízgazdálkodási gyakorlat)</td>
<td></td>
<td></td>
<td>Minden településen alkalmazzák.</td>
</tr>
<tr>
<td>CS1: Csatornázás, vagy szakszerű egyedi szennyvíztisztítás és -elhelyezés megoldása a Szennyvíz Programban szereplő agglomerációkban</td>
<td>3</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>CS2: Csatornázás vagy szakszerű egyedi vagy település szintű szennyvíztisztítás és -elhelyezés megoldása a Szennyvíz Programba nem tartozó településeken:</td>
<td>2</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>
8.3 Egyéb szennyezések megelőzése, illetve szennyezések kárelhárítása, kármentesítése

Az egyéb szennyezésekkel kapcsolatos intézkedések felöllel sikeresen megelőzhetik a veszélyes anyagok által okozott szennyeződéseket kiküszöbölésével kapcsolatos intézkedéseket, a balesetszerű szennyezési események (beleértve az árvízket is) megelőzését, illetve a növényvédő szerek fenntartható használatát. Biztosítani szükséges továbbá a használt termálvízektől elválasztása szükséges, hogy csökkentsék a felszíni víztestek által bekövetkező károkat. További feladatot jelent a kutak rossz állapotából adódó jelenlegi és potenciális szennyezések megakadályozása és a közlekedésből származó szennyezések mérséklése.

Feloldók:
KvVM, NFGM, KHEM, ÖM, FVM

Végrehajtásban érintettek:
♦ szennyezett területek tulajdonosa, kezelője (ipar, önkormányzat, állam)
♦ kötelezett üzemek, védelmi szervezetek
♦ vízhasználó
♦ utak, vasutak kezelője

a) jelenleg érvényben lévő intézkedések

Veszélyes és egyéb szennyező anyagok vízbe jutásának megakadályozása

A veszélyes és egyéb szennyező anyagokra vonatkozó alapintézkedések alapvetően szabályozás jellegűek, melyek mindenevél magyarázatot nyújtanak a szennyezés-csökkentést, illetve a szennyezés tiltását célozó intézkedéseket a terhelések és azok vízminőségi következményeinek feltárását (monitoring) kell, hogy elősegitsék.

A hazai szabályozás értelmében tilos a felszíni vizekbe, illetve azok medrébe bármilyen halmozállapotú, vízszennyezést okozó anyagot juttatni, az engedélyezett vízi létesítményen bevezetett kibocsáthatási határérték alatt kibocsátások kivételével.

A felszíni vízbe történő használt termálvíz bevezetés csak akkor lehetséges, ha hőfoka és sötétalma megfelelő, nincsenek benne ökotoxikus mikroszennyezők. Az elsőbbségi anyagnak minősített szennyezőanyagokra a felszíni víztestekre vonatkozó környezetminőségi határértékeket (EQS értékeket) közösségi szinten határozzák meg (Irányelv a környezetminőségi határértékekről), ezt Magyarország is tudomásul vette és alkalmazta már a vizek kémiai állapotának jellemzésekor. Ezen túlmenően, az „Egyezmény a Duna védelmére és fenntartható használatára irányuló együttműködésről (Szófiai Konvenció)” keretében a dunai országok megállapodtak, hogy a Duna-medencében a VKI elsőbbségi anyagokon kívül releváns veszélyes anyag a króm, cink, arzén, réz és a cianid.
A veszélyes anyagok **felszín alatti vízbe** juttatását tiltó hazai rendelkezések akár közvetlen, akár közvetett bevezetésekkel, az egyéb (kevésbé veszélyes) anyagok esetében teljesen összhangban vannak az EU szabályokkal. A hazai jogszabályok tartalmazzák a felszín alatti vizek szennyezésének megelőzése érdekében a közvetlen bevezetések tiltását (kivéve, ha az nem szennyezik pl. emberi eredetű szennyezőanyagot nem tartalmazó visszasajtolás, talajvízdúsítás), valamint a közvetett szennyezés szempontjából potenciális tevékenységek korlátozását, a tevékenység veszélyessége és a felszín alatti víz sérülékenységéhez függvényében. A hazai szabályozás továbbá kiterjed a felszín alatti víz kitermelésével, visszatáplálásával, dúsításával, továbbá megfigyelésével kapcsolatos vízi létesítményekre (így pl. kutakra, foglalt forrásokra, hévízművekre), valamint vízi munkákra vonatkozó előírásokra.

Az EU felszín alatti vizek védelmére vonatkozó irányelv tartalmazza a jó kémiai állapot megállapításának kritériumait, rendelkezéseket tartalmaz a szennyező anyagok felszín alatti vízbe juttatásának megakadályozására vagy korlátozására vonatkozóan, illetve előírja a tagállamok számára a saját felszín alatti víz minőségi előírásai megállapítását (ün. „küszöbértékek”), figyelembe véve az azonosított kockázatokat és az irányelv II. mellékletében meghatározott anyagok listáját.

Az IPPC Irányelvben előírt „elérhető legjobb technika” bevezetéséhez, az irányelv hatálya alá tartozó létesítmények környezeti tevékenységének szabályozására az illetékes hatóságok (Magyarországon a területi környezetvédelmi, természetvédelmi és vízügyi felügyelőek) egységes környezethasználati engedélyt adtak ki. Az egységes környezethasználati engedély (IPPC) köteles üzemek részére a határértékek teljesítését figyelembe venni, figyelembe véve az azonosított kockázatokat és az irányelv szerint meghatározott üzemeltetést folytatnak.

A SEVESO Irányelv alapján a vonatkozó hazai jogszabály kijelöli, azon felső és alsó küszöbértékű veszélyes ipari üzemeket, amelyeknek belső védelmi tervet kell készíteniük a veszélyes anyagokkal kapcsolatos súlyos balesetek veszélyeinek megelőzése érdekében. 2009-ben Magyarországon 97 alsó és 67 felső küszöbértékű veszélyes ipari üzemet tartottak nyilván. A veszélyes ipari üzemek biztonsági jelentést és belső védelmi tervet kell készíteniük. Ezek alapján készülnek a települések külső védelmi tervei, a lakossági tájékozottak és a településrendezési tervezés során figyelembe kell venni azokat az intézkedéseket, melyek tartalmazzák mind az új, mind a régi veszélyes üzemekre vonatkozó biztonsági intézkedéseket.

A katasztrófavédelmi törvény rendelkezik a **Katasztrófavédelmi Országos Információs Rendszer** kiépítéséről is. E rendszer az egész ország területét lefedő informatikai hálózatot jelent, amely a monitoring rendszer alapján a vízügyi igazgatóságoknak területi kárelhárítási tervet kell készíteni, és kárelhárítási gyakorlatokat tartani.

A katasztrófavédelmi törvény rendelkezik a **Katasztrófavédelmi Országos Információs Rendszer** kiépítéséről is. E rendszer az egész ország területét lefedő informatikai hálózatot jelent, amely a monitoring rendszer alapján a vízügyi igazgatóságoknak területi kárelhárítási tervet kell készíteni, és kárelhárítási gyakorlatokat tartani.

A monitoring által kimutatott határértékeket meghaladó szennyezés ritka. A szórványosan előforduló és inkább településekhez kapcsolódó kis koncentrációk növekedésének megelőzése érdekében, amelyek elsősorban a szabálytalan használatból vagy a múltból megmaradt maradványokból származnak, szükséges az ellenőrzés fokozása, illetve a monitoring rendszer további fejlesztése.

E célto szolgálja, hogy a növevődő szer használatát 2011-től a közvetlen kifizetések feltételeként ellenőrizik. A gazdálkodónak többek között az elvégzett növevődő szeres kezelésekről
permetezési naplót kell vezetnie, amelynek alapján ellenőrizhetik a növényvédő szerek nyilvántartását, tárolását és engedélyeknek megfelelő felhasználását.

Kármentesítés

b) további megvalósítandó intézkedések
Az intézkedések a veszélyes anyagot gyártók vagy használók lehetséges szennyezéseinek megakadályozását, illetve a múltbéli környezeti szennyezések felszámolását szolgálják. A lehetséges szennyezések megakadályozásához kapcsolódó jövőbeli feladat a területi kárelhárítási tervek kidolgozása. A múltbéli szennyezések felszámolására a jövőben is forrásokat kell biztosítani a VKI prioritásainak megfelelő ütemezésben.

További problémát jelentenek a nem megfelelő kiképzéssel kialakított kutak, amelyek a szennyezés leszivárgását eredményezhetik a vízbázis és a vízadó rétegek elszennyezésével, ezért biztosítani kell ezek visszaszorítását. A szakszerű kútkiképzés, kútfejlesztés megvalósítása érdekében fokozni kell a hatósági tevékenységet, illetve az önkormányzatok hatósági ellenőrzési jogkörének szabályait meg kell alkotni (ellenőrzési ütemterv alapján történő hatósági ellenőrzés, amely meghatározza az ellenőrizendő tevékenységet végzők körét, ellenőrzések gyakoriságát stb.)

A nem megfelelően üzemeltetett utak, vasutak felszín alatti vizek állapotát ronthatják, az elvezetett és nem kellően tisztított vizek pedig a felszíni vizekben (a szabályozás nem biztosítja a szükséges védelmi intézkedések megvalósulását) A további intézkedések célja a közlekedési út felületéről a csapadékvízzel lemosódó TPH, PAH és nehézfémek (Pb, Cu, Zn, Cd, Ni, Cr) megfelelő összegyűjtésének és kezelésének biztosítása.

A használt termálvíz megfelelőségének biztosítása érdekében ösztönöző önkormányzati intézkedések megvalósulását követően az állóvizek esetében olyan sok az adathiány (állapotjellemző és terhelés egyaránt), hogy az egyéb szennyezésekre vonatkozó intézkedések, néhány kivételes esetettől eltekintve, gyakorlatilag nem tervezhetők.

8-4. táblázat: Az egyéb szennyezések megelőzése, kárelhárítása, kármentesítése érdekében tett intézkedések alkalmazása a vízfolyás víztesteknél

<table>
<thead>
<tr>
<th>Intézkedés</th>
<th>Előkészítés 2012-ig (az érintett víztestek száma)</th>
<th>A környezeti célkitűzés eléréséhez szükséges alkalmazások (az érintett víztestek száma)</th>
<th>Az állapot javítását és fenntartását szolgáló alkalmazások (az érintett víztestek száma)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PT1: Ipari szennyvíz, közvetlen bevezetésének módosítása</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TE1, TE2, TE3: Települési intézkedések (hulladéklerakók rekultivációja, csapadékvíz elvezetés, jó települési vízgazdálkodási gyakorlat)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HA2: Vízfolyások hullámentéből/árterén a területhasználat ökológiai és vízminőség-védelmi szempontú kialakítása és fenntartása</td>
<td>28</td>
<td>5</td>
<td>23</td>
</tr>
<tr>
<td>HM8: Üledék egységi eltávolítása állóvizekből</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TA3: Belvíz-érzékeny területekre vonatkozó intézkedések (vízvisszatartás a belvízelvezető-rendszer használata nélkül, művelési mód és ágváltás)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>KK1, KK2: Ökológiai szempontok érvényesítése a hajózásban, kikötők korszerűsítése</td>
<td></td>
<td>Függ az előkészítő fázistól</td>
<td>1</td>
</tr>
<tr>
<td>SZ3, SZ4: Szennylvízelhelyezéssel kapcsolatos intézkedések (ipari bevezetések módosítása, illegális bevezetések felszámolása)</td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>PT5: Szűrőmezők kialakítása</td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>KÁ1: A vizek állapotát veszélyeztető szennyezett területek kármentesítése</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KÁ2: Kárelhárítási tervek kidolgozása és megvalósítása</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

8-5. táblázat: Az egyéb szennyezések megelőzése, kárelhárítása, kármentesítése érdekében tett intézkedések alkalmazása a felszín alatti víztesteknél

<table>
<thead>
<tr>
<th>Intézkedés</th>
<th>Előkészítés 2012-ig (az érintett víztestek száma)</th>
<th>A környezeti célkitűzés eléréséhez szükséges alkalmazások (az érintett víztestek száma)</th>
<th>Az állapot javítását és fenntartását szolgáló alkalmazások (az érintett víztestek száma)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TE1, TE2, TE3: Települési intézkedések (hulladéklerakók rekultivációja, csapadékvíz elvezetés, jó települési vízgazdálkodási gyakorlat)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KÁ1: A vizek állapotát veszélyeztető szennyezett területek kármentesítése (Kármentesítési Program)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KÁ3: Felszín alatti vizek szennyeződésének megakadályozása</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KÁ4: Szakszerű kútiképzés, kötrekonstrukció</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
8.4 Vízfolyások és állóvizek hidromorfológiai állapotát javító intézkedések

A hidromorfológiai intézkedések célja a vízfolyások és állóvizek morfológiai és hidrológiai viszonyaiban bekövetkezett mértékű változások megszüntetése, amelyek akadályozzák a jó ökológiai állapot elérését. Az intézkedések három csoportját alkotják a (i) a meder morfológiai viszonyait javító intézkedések, (ii) a hullámtéri/ártéri, illetve partmenti területhasználat módosítását szolgáló intézkedések, valamint (iii) a mederben épült műtárgyakra vonatkozó intézkedések. (A vízjárást módosító vízhasználatok hatásának enyhítését szolgáló intézkedésekkel a 8.5 fejezet foglalkozik.) Az intézkedések tervezése során figyelembe kell venni az emberi igényeket, vagyis a víztestek erősen módosított állapotából következő, fenntartható hidromorfológiai elváltozásokat nem kell intézkedésekkel megszüntetni.

8.4.1 Vízfolyások és állóvizek medrét érintő intézkedések

A mederrehabilitációs intézkedések célja a hossz- és keresztirányban szabályozott meder természetes változékonyságának helyreállítása, amilyen mértékben ez műszaki szempontból, reális költségek mellett és az érdekeltek egyetértésével megoldható. Az intézkedés magába foglalhatja a mederforma és meder vonalvezetésének módosítását, kisebb műtárgyak és burkolatok átalakítását vagy megszüntetését, a meder fenntartó jellegű kotrását, a természetes parti növényzet fejlődésének elősegítését és a rendszeres ökológiai szemlélet fenntartást. Ezek közül egy-egy vízfolyáson a részletes tervezés során kiválasztott részintézkedések valósulnak meg.

Felelősök:
KvVM, FVM, ÖM

Végrehajtásban érintettek:
- állóvíz, vízfolyás kezelője (KÖVIZIG, önkormányzat, társulat stb.)

a) jelenleg érvényben lévő intézkedések

Az egyes ökológiai követelményeket hazai jogszabályok, műszaki irányelvek tartalmazzák (EU Irányelv nincs). A hazai műszaki és engedélyezési szabályok meglehetősen általánosak, a szabályozás továbbfejlesztéséhez további kiegészítő intézkedések bevezetése szükséges.

b) további megvalósítandó intézkedések

A további feladatokat az ökológiai szempontú vízfolyás és állóvíz rehabilitációs beruházások megvalósítása jelenti, amelyhez egyrészt megfelelő jogszabályi háttér kialakítása, másrészt megfelelő támogatási rendszer biztosítása is szükséges.
A vízfolyások és az állóvizek rehabilitációs munkáit, ökológiai szemlélettel, egyedileg kell megtervezni és kivitelezni. A következő megjegyzéseket a munkák jellegét csak általában jellemzik.

A dombvidéki vízfolyásokon a szabályozott trapézmeder természetes változások eredményeként válhat egyre természebbé, mind kereszt-, mind hosszirányban, amelyhez elsősorban a megfelelő teret és az ökológiai szemlélettel végrehajtott rendszeres fenntartást kell biztosítni. (A természetes folyamatok elindításához szükség lehet földmunkára, illetve természetes jellegű akadályok elhelyezésére).

Síkvidéken a szűk hullámtérrel kialakított, és új töltés (jelentős földmunka) építése nélkül nem szélesíthető hullámtéri vízfolyások esetében nincsen megfelelő tér a keresztirányú medermozgások számára, így a középvízi meder általában egyenes marad, változatossága gyakorlatilag csak mesterséges kiőrlésének következményeként jelenléthet. Széles mederfenék esetében sem a kisvízi meanderezés, sem az üledékek egyszeri eltávolítása és a növényzet irtása. (Rendszeres, csak a szükséges mértékű üledékeltávolítás és növénygondozás a fenntartási munkák keretében történik).

Települési szakaszokon esetében a fenti intézkedések csak a belterületi sajátságok figyelembevételével valósíthatók meg, amelyek speciális megoldásokat és szabályozást igényelnek.

Nagy folyók esetében a szabályozottság csökkentése az jelenti, hogy a lehetőségek szerint hagyni kell a folyók medrének szabad fejlődését, és újabb partvédő és keresztirányú művek létesítése csak különösen indokolt esetekben nyílik, míg a szabályozott stabilitás vagy teljes lebontására, áthelyezésére csak nagyon korlátozott vagy megszüntetett lehetőségek közreműködése mellett. A mederfenék megfelelő felosztás és kialakítása, a hullámterrel kialakított, és új töltés (visszatöltés) építése nélkül nem szabályozható, megfelelő partvonal és kivánt rézsű külsőhajlás (vízmélység-változás) biztosítása a meghatározó feladatok. (A megfelelő partvonal és kivánt rézsű külsőhajlás (vízmélység-változás) biztosítása a meghatározó feladatok).

8.4.2 Vízfolyások árterére vagy hullámterére, valamint az állóvizek parti sávjára vonatkozó intézkedések

A felszíni vizek parti sávja és ártere (vagy a tőlésesekkel, depóniákkal kialakított hullámter) vízminőségi és ökológiai szempontból egyaránt jelentős szerepet játszik a víztest állapotának alakulásában. Az intézkedések célja a természetes ártér helyreállítása, vagy ha ez nem
lehetséges, akkor ennek közelítése a hullámter szélesítésével, a mentett oldali területek rendszeres vízpótlásával, az ártéri/hullámteri területhasználat módosításával, védősávok kialakításával (az intézkedések részben átfednek a magas tápanyagtartalom csökkentése érdekében alkalmazott vízvédelmi pufferzóna kialakításával).

Fellelősök:
KvVM, ÖM, FVM

Végrehajtásban érintettek:

- vízfolyás kezelője (KÖVIZIG, társulat, önkormányzat)
- mezőgazdasági gazdálkodók

a) jelenleg érvényben lévő intézkedések

b) további megvalósítandó intézkedések

Kis- és közepes dombvidéki vízfolyások esetében a meglévő árvízvédelmi töltések, depóniák teljes vagy részleges visszabontása alapján megfelelő vízpótlás megvalósítható. Ennek feltétele az előírásokról következően azokat a területeket választjuk ki, amelyekben a területen kialakított kis mélységű vízpótló rendszer megfelelően működik.

Síkvidéken, illetve nagy folyók esetén a nyílt ártér helyreállítása ökológiai, vízminőségi és árvízvédelmi szempontból egyaránt kedvező.

Az ártéren/hullámteren a cél az árvízvédelmi és a természetvédelmi szempontokat harmonizáló speciális ártéri gazdálkodási formák kialakítása: a szántóföldi művelés vagy az eladott, sűrű fás-bokros területek felvételével bővítjük áltáni/vízbeviteli súlyforrást, és természetes vízválasztást hozzuk létre. A mentett oldali mellékágak, holtágak vízpótlása, mélyfolyók elárasztása a töltések fennmaradása esetén is megoldható, a tulajdonosok nem érdeklődnek a váltás iránt, vagy az elaprózott tulajdonviszonyok akadályozzák a megvalósítást.
elvezethető. Lényegében a töltések miatt megszűnt ártér ökológiai szempontból kedvező helyettesítéséről van szó. A megvalósítás kapcsolódhat árvízvédelmi projektekhez is, de létrejöhet attól függenlenül is (lényeges különbség a szükségtározókhoz képest, hogy ebben az esetben gyakori előírások biztosításáról van szó). Amennyiben a mentett oldalon található, vízpótlást igénylő területek rendszeres vízpótlását műszakilag vagy a költségek miatt nem oldható meg, a víztést az árvízvédelmi szempontokra tekintettel erősen módosított besorolást kap, és csak a hullámtéri állapotjavitó intézkedéseket végrehajtani. Az Árvízi Kockázatkezelési Irányelv (2007/60/EK) előírja, hogy az árvízvédelmi kockázati tervek készítése során (határidő 2015) figyelembe kell venni a VKI jó állapota vonatkozó előírásait. A VKI alkalmazásakor, a rehabilitációs intézkedések tervezése során pedig az árvízi biztonság szempontjaira kell tekintettel lenni. A VKI tehát egyrészt ökológiai követelményeket fogalmaz meg az árvízvédelem számára, másrészt viszont az árterületek és hullámterek helyreállítása segíti az árvizek levezetését.

Állóvizek parti sávjában elsősorban a pufferzóna kialakításával kapcsolatos szempontok dominálnak (lásd 8.2.4. fejezet).

Az intézkedések alkalmazása előtt alegységenként (részvízgyűjtőként) előkészítő vizsgálatokra van szükség, amelyek célja annak feltárása, hogy az egyes víztesteken a vázolt alternatív megoldások közül melyik felel meg leginkább a helyi viszonyoknak, illetve a támogatási rendszerhez milyen prioritások, kiegészítő előírások kapcsolhatók.

8.4.3 A hidromorfológiai viszonyokat jelentősen befolyásoló vízhasználatok módosítása

Völgyzárógátás tározók létesítése, vízfolyások duzzasztása vagy zsíripekel történő elzárása, állóvizek vízszintszabályozása, a hajózást biztosító és kiszolgáló tevékenységek és létesítmények olyan vízhasználatok, amelyek jelentősen befolyásolhatják a víztest ökológiai állapotát. Az intézkedések célja a hosszirányú átjárhatóság, a vízállás és sebességviszonyok és az alvízi szakaszok megfelelő vízjárásának helyreállítása érdekében ezeknek a vízhasználatoknak a felülvizsgálata és szükség esetén módosítása/megszüntetése.

Felelősök:
KvVM, FVM, ÖM, NFGM, KHEM

Végrehajtási előírások:
- a vízfolyás és/vagy műtárgy, kezelője (KÖVIZIG, társulat, önkormányzat)
- vízhasználók (energiaipar, halászat, közlekedés)

a) jelenleg érvényben lévő intézkedések

A fenntartható vízhasználatra hazai jogszabályok vonatkoznak, EU Irányelv nincs. Egyes állapotjavító projektek megvalósítására a ROP-okból támogatás igénybe vehető, illetve a természetvédelmi célú projektek a KEOP-ből támogathatók.

b) további megvalósítandó intézkedések

Völgyzárógátás tározók esetében a hosszirányú átjárhatóság csak kivételes esetekben biztosítható. A felülvizsgálat elsősorban a tározó funkciójának és üzemelési rendjének ellenőrzésére, értékelésére, illetve módosítására vonatkozik. A vízleeresztés felülvizsgálata is ennek az intézkedésnek a része, de a probléma a fenntartható vízhasználatok körébe tartozik (lásd 8.5. fejezet).
Nagy műtárgyak esetében részletes biológiai feltárás, és költség-haszon elemzés alapján egyedileg kell dönteni az átjárhatóság biztosításáról, illetve annak módjáról (előkészítő fázis). Ebbe a körbe tartoznak a mellékfolyókra épült torkolati műtárgyak is. Megvalósításuk a helyigény miatt műszaki akadályokba is ütközhet. A duzzasztóművek, duzzasztott szakaszok általában jelentős emberi igények kielégítését szolgálják (energiatermelés, vízkivezetés, medertározás), ezért elsősorban azt kell megvizsgálni, hogy az üzemelési rend módosításával és a műtárgy korszerűsítésével megoldható-e az átjárhatóság. Nagy szkívikéres folyókon a folyó hosszúházhoz képest jelentős szakaszt befolyásoló duzzasztás általában indok az erősen módosított állapot alkalmazására. A jó ökológiai állapot általában hallépcsők építése ellenére sem biztosítható. A felülvizsgálatnak része a duzzasztás funkciójának ellenőrzése is.

Több elzárással is rendelkező kisebb vízgyűjtőkön (~1000 km²) az egész vízrendszer átjárhatósági viszonyait kell vizsgálni (szilipékek, fenékülés, fenékgátak hatása), és ennek alapján kell meghatározni a javasolt intézkedéseket (előkészítő fázis). A fenékülés, fenékgátak surranti jellegű átalakítását a vízfolyások rehabilitációja keretében célzottan megoldani (lásd 8.4.1. fejezet).

Állóvizek vízszintszabályozásának felülvizsgálata kiterjed a szabályozás céljára (indokoltságára) és a természetes állóvizek esetén az ökológiai – és ha védett területről van szó, a természetvédelmi – szempontok figyelembevételére.

Az intézkedések egy másik csoportja alkotja a kikötők és hajózási tevékenység ökológiai szempontú átalakítását célzó intézkedések, illetve új fejlesztések esetén ezeknek az érvényesítése.

8.4.4 A vízfolyások és állóvizek hidromorfológiai állapotát javító intézkedések alkalmazása

Az intézkedések alkalmazásának statisztikai adatait mutatja be a 8-6. és 8-7. táblázat. A táblázatok értelmezésével kapcsolatban lásd a 8.2.6 fejezetet.

8-6. táblázat: Vízfolyások hidromorfológiai állapotát javító intézkedések alkalmazása vízfolyás víztesteknél

<table>
<thead>
<tr>
<th>Intézkedés</th>
<th>Előkészítés 2012-ig (az érintett víztestek száma)</th>
<th>A környezeti célkitűzés eléréséhez szükséges alkalmazások (az érintett víztestek száma)</th>
<th>Az állapot javítását és fenntartását szolgáló alkalmazások (az érintett víztestek száma)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HA1: Árterek helyreállítása tőlétes elbontásával, áthelyezésével, illetve mentett oldali vízkivezetéssel</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HA2: Vízfolyások hullámterében/árterén a területhasználat ökológiai és vízminőség-védelmi szempontú kialakítása és fenntartása</td>
<td>28</td>
<td>5</td>
<td>23</td>
</tr>
<tr>
<td>HM1 – HM5: Ökológiai személytű mederrehabilitáció és fenntartás (meder, parti sáv)</td>
<td>1</td>
<td>31</td>
<td></td>
</tr>
<tr>
<td>HM6: Vízfolyások medrének és parti sávjának fenntartása ökológiai szempontok szerint</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

8. fejezet Intézkedési program – 121 –
8. fejezet

Intézkedési program

<table>
<thead>
<tr>
<th>Intézkedés</th>
<th>Előkészítés 2012-ig (az érintett víztestek száma)</th>
<th>A környezeti célkitűzés eléréséhez szükséges alkalmazások (az érintett víztestek száma)</th>
<th>Az állapot javítását és fenntartását szolgáló alkalmazások (az érintett víztestek száma)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DU1, DU2, DU3, DU4: Duzzasztók, zsírlepek üzemeltetésének módosítása, hallépcsők építése</td>
<td>12</td>
<td>Függ az előkészítő fázistól</td>
<td></td>
</tr>
<tr>
<td>KK1, KK2: Ökológiai szempontok érvényesítése a hajózásban, kikötők korszerűsítése</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

8-7. táblázat: Állóvizek hidromorfológiai állapotát javító intézkedések alkalmazása az állóvíz víztesteknél

<table>
<thead>
<tr>
<th>Intézkedés</th>
<th>Előkészítés 2012-ig (az érintett víztestek száma)</th>
<th>A környezeti célkitűzés eléréséhez szükséges alkalmazások (az érintett víztestek száma)</th>
<th>Az állapot javítását és fenntartását szolgáló alkalmazások (az érintett víztestek száma)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HA3: Állóvizek part menti sávjában a területhasználat ökológiai és vízminőség-védelmi szempontú kialakítása és fenntartása</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HM7, HM9: Állóvizek partjának rehabilitációja és fenntartása</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HM10: Állóvizek medrének fenntartása</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DU1, DU2, DU3: Duzzasztók, zsírlepek üzemeltetésének módosítása, hallépcsők építése</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KK1, KK2: Ökológiai szempontok érvényesítése a hajózásban, kikötők korszerűsítése</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

8.5 Fenntartható vízhasználatok a vizek mennyiségi védelme érdekében

A fenntartható vízhasználatok elősegítése alapvetően szabályozásban keresztül valósítható meg. Ennek célja az ökológiai szempontok érvényesítése, a felszín alatti vizek esetében a víztestek jó mennyiségi állapotának elérése és megtartása érdekében a hatékonyság és takarékosság ösztönzése egyrészt a jelenlegi víz- és kapcsolódó területhasználatok felülvizsgálatával és szükség esetén módszerváltával, másrészt gazdasági szabályozókkal. Ide tartozó intézkedések: a vízfolyásokat, állóvizeket és felszín alatti vizeket érintő közvetlen vízkivételek szabályozása, a területi vízvisszatartás növelése, a csatornák felszín alatti vizeket megcsapoló hatásának csökkentése, a tározók üzemeltetése az alvízre vonatkozó ökológiai szempontok figyelembevételével és a takarékos vízhasználati módok elterjesztése.

Felelősök:
KvVM, FVM, ÖM, NFGM

Végrehajtásban érintettek:
- vízfolyások kezelője (KÖVIZIG, társulat, önkormányzat),
- ipar, mezőgazdaság, víziközművek, egyéb vízhasználók
a) jelenleg érvényben lévő intézkedések

A fentrartható vízhasználatok ökológiai alapelvét a VKI rögzíti: mind a felszíni, mind a felszín alatti vizek esetében érvényes, hogy a vízhasználatok (vízkivételek vagy egyéb vízelvonással járó vízhasználatok) nem befolyásolhatják jelentős mértékben a víztől függő ökoszisztémák állapotát. A hazai jogszabályok közül a Vízgazdálkodásról szóló Törvény már a VKI hatályba lépése előtt rögzítette az alapelvet, valamint a vízigények kielégítésének sorrendjét, 2004-től a termálvizek esetében a visszasajtolási kötelezettséget is. A hazai szabályozás előírja a felszín alatti víztestek jó mennyiségi állapotának biztosítását, és ennek érdekében víztestenkénti és ezeken belüli igénybevétel korlátok meghatározását, valamint a Természetvédelmi Törvény az ökológiai vízkészlet biztosítását. 2008-tól hatályos a felszín alatti vizek kitermelésével, visszatáplálásával, dúsításával, továbbá megfigyelésével kapcsolatos vízi létesítményekre (így pl. kutakra, foglalt forrásokra, hévízümvekre), valamint vízi munkáakra vonatkozó szabályozás. A vizek használatát szabályozó eszköz a vízkészlet-járulék.

b) további megvalósítandó intézkedések

A vízhasználatok szabályozásának egyik részfeladata az érthető gazdasági szabályozórendszer felülvizsgálata és módosítása (lásd részletesen a 8.1 fejezetben), másik részfeladata pedig a vízjogi megvalósulási alapján szolgáló igénybevételi határértékek meghatározása. A felszíni vizek esetén a mederben hagyandó vízhozam, meghatározására van szükség. A becslés fő szempontja, hogy az ökológiai Kisvíz biztosítása azt a vízborítottságot, illetve sebességet, amely a mederbeli ökoszisztémák károsodás nélküli fennmaradásához kisvízi időszakban is szükséges. A felszín alatti vizek esetében az igénybevételi határértékek a víztest-csoportokra, a mennyiségi állapotértékelés vízmérték teszteleje keretében megállapított hasznosítható készletek területi megoszlásának pontosítását jelentik, figyelembe véve a járvány-területi időszakban, a jelenlegi vízhasználatokat, a vízadóalakítás területi változásait és a sekély víztestek esetében a felszín alatti vizektől függő ökoszisztémák (FAVÖKO) területi elhelyezkedését.

A vízhasználat korlátozása esetén az új vízkivételi helyek igénybevételére vagy víztakarékos eljárást alkalmazza a felszín alatti feladata, a „használó fizet” elv alapján. A vízhasználók tehereslő képességét figyelembe véve az új jogszabályi feltételekhez történő alkalmazkodást segíteni szükséges (pl. türelmi idővel, pénzügyi ösztönzéssel).

A magas talajvízállású területeken található belvízelvezető és megcsapolt csatornák működését felül kell vizsgálni, és ennek alapján módosítani kell azoknak a csatornákainak a működését, amelyek a felszín alatti vizeket a vízvédelem által indokoltnál nagyobb mértékben csapolják meg.

A takarékos vízhasználat megvalósítása egyaránt jelenti az öntözési vízigények csökkentését szárazságtűrő növények termesztésével, a területen visszatartott víz mennyiségének növelésével (talajban, lokális mélyedésekben, tározókban), és víztakarékos öntözési technológiák alkalmazásával, valamint a lakossági vízhasználatban a takarékos szerelemek beépítését. A víztakarékos megoldások alkalmazását államilag kell támogatni (lásd részletesebben a 8.1 fejezetben).

Az engedély nélküli tevékenységek, kockázatják a felszín alatti vizek megfelelő állapotát, ugyanakkor ezeket a jelenlegi hatósági eszközök nem minden esetben képesek visszaszorítani. További feladat az engedély nélküli vízkivételek megszüntetése, lehetőség szerint az engedélyezett körbe való bevonásuk.
A termálvizek és egyéb geotermikus célal hasznosított vizek használatára és védelmére vonatkozó jó gyakorlatok továbbfejlesztése indokolt, különösen annak fényében, hogy e megújuló erőforrás gazdasági hasznosítására egyre nagyobb az igény. Ennek lényege a takarékos és környezetkímélő (biztonságos) használat elterjesztése. A takarékos vízhasználat előre számított érdekelése érdekében elsőként a termálvíz termelés vízmérővel történő mérését és megfelelő adatszolgáltatást kell bevezetni. Továbbá bővíteni kell a termálvizekkel kapcsolatos állami, szakhatósági ismereteket, egyszerűsíteni és átláthatóvá kell tenni a hatósági és szakhatósági feladatokat, díjakat.

A völgyzárógátas tározók esetében vizsgálni kell, hogy a vízleeresztések mennyire felelnek meg az alvízi mederszakasz ökológiai követelményeinek. Kivízi időszakban a tápláló vízfolyáson érkező vízhozamnak megfelelő mennyiséget az alvíz felé tovább kell engedni. A tápláló vízhozam teljes visszatartása (horgászati és halászati hasznosítású tározók esetében igen gyakori probléma) csak a VKI követelményei szerinti, a mentességekre vonatkozó elemzések alapján engedhető meg hosszú távon.

A fenntartható vízhasználatokra vonatkozó intézkedések alkalmazása

Az intézkedések alkalmazásának statisztikai adatait mutatja be a 8-8., 8-9. és 8-10. táblázat. A táblázatok értelmezésével kapcsolatban lásd a 8.2.6 fejezetet.

8-8. táblázat: A fenntartható vízhasználatokra vonatkozó intézkedések alkalmazása vízfolyás váztesteknél

<table>
<thead>
<tr>
<th>Intézkedés</th>
<th>Előkészítés 2012-ig (az érintett váztestek száma)</th>
<th>A környezeti célkitűzés eléréséhez szükséges alkalmazások (az érintett váztestek száma)</th>
<th>Az állapot javítását és fenntartását szolgáló alkalmazások (az érintett váztestek száma)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TA3: Belvíz-érzékeny területekre vonatkozó intézkedések (vízvisszatartás a belvízelvezető-rendszer használata nélkül, művelési mód- és ágváltás)</td>
<td>3</td>
<td>Függ az előkészítő fázisától</td>
<td>1</td>
</tr>
<tr>
<td>TA5: A belvíz-rendszer módosítása a vízvisszatartás szempontjait figyelembe véve</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TA6: Víztakarékos növénytermesztési módok alkalmazása</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FE1, FE3: Vízhasználatok módosítása, ellenőrzése, illegális hasznalatok megszüntetése</td>
<td>4</td>
<td></td>
<td>Mindenhol alkalmazzák.</td>
</tr>
<tr>
<td>FE2: Ökológiai és vízminőségvédelmi célú vízkormányzás, átvizetések, gravitációs kapcsolatok helyreállítása</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DU4: Völgyzárógátas tározó üzemeltetésének (leeresztés) felülvizsgálata</td>
<td>6</td>
<td>Függ az előkészítő fázisától</td>
<td></td>
</tr>
</tbody>
</table>
8. fejezet: Intézkedési program

8.9. táblázat: A fenntartható vízhasználatokra vonatkozó intézkedések alkalmazása az állóvíz víztesteknél

<table>
<thead>
<tr>
<th>Intézkedés</th>
<th>Előkészítés 2012-ig (az érintett víztestek száma)</th>
<th>A környezeti célkitűzés eléréséhez szükséges alkalmazások (az érintett víztestek száma)</th>
<th>Az állapot javítását és fenntartását szolgáló alkalmazások (az érintett víztestek száma)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TA3: Belvíz-érzékeny területekre vonatkozó intézkedések (vízvisszatartás a belvízelvezető-rendszer használata nélkül, művelési mód- és ágváltás)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TA5: A belvíz-rendszer módosítása a vízvisszatartás szempontjait figyelembe véve</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TA6: Vízalkarékos növénytermesztési módok alkalmazása</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FE1, FE3: Vízhasználatok módosítása, ellenőrzése, illegális használatok megszüntetése</td>
<td>Az éghajlatváltozástól függő mértékben az egész országra</td>
<td>Mindenhol alkalmazzák</td>
<td></td>
</tr>
<tr>
<td>FE2: Ökológiai és vízminőségvédelmi célú vízkormányzás, átvezetések, gravitációs kapcsolatok helyreállítása</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

8.10. táblázat: A fenntartható vízhasználatokra vonatkozó intézkedések alkalmazása a felszín alatti víztesteknél

<table>
<thead>
<tr>
<th>Intézkedés</th>
<th>Előkészítés 2012-ig (az érintett víztestek száma)</th>
<th>A környezeti célkitűzés eléréséhez szükséges alkalmazások (az érintett víztestek száma)</th>
<th>Az állapot javítását és fenntartását szolgáló alkalmazások (az érintett víztestek száma)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TA4: Csapadék-gazdálkodás, beszivárgás növelése nem belvíz érzékeny területeken</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TA5: A belvíz-rendszer módosítása a vízvisszatartás szempontjait figyelembe véve (…..megcsapolás csökkentése)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TA6: Vízalkarékos növénytermesztési módok alkalmazása</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FE1, FE3: Vízhasználatok módosítása, ellenőrzése, illegális használatok megszüntetése</td>
<td>Az éghajlatváltozástól függő mértékben az egész országra</td>
<td>Mindenhol alkalmazzák</td>
<td></td>
</tr>
<tr>
<td>FE4: Energetikai célra hasznosított vizek visszasajtolása, visszasajtolási technológia fejlesztése</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

8.6 Megfelelő ivóvízminőséget biztosító intézkedések

Fellelősök:

KvVM, ÖM, FVM, NFGM, KHEM

Végrehajtásban érintettek:

- vízi közmű tulajdonos, szolgáltató (őnkormányzat, állam, gazdálkodók),
- Vízhasználók, szennyezők (ipar, mezőgazdaság, őnkormányzat, lakosság)
VÍZGYŰJTŐ-GAZDÁLKODÁSI TERV

3-3 Fekete-víz vízgyűjtő

a) jelenleg érvényben lévő intézkedések

Az ivóvízbázis-védelem célja az emberi tevékenységből származó szennyezéseket megelőzése, a természetes (jó) vízminőség megőrzése az ivóvíz termelés céljára kiépített vízművek környezetében és a jövőben emberi fogyasztásra szánt távlati vízbázisok területén. A Sérülékenyi Ivóvízbázisok Biztonságba Helyezése Program keretében megkezdődött a vízbázisok diagnosztikai vizsgálata és biztonságba helyezési terveinek elkészítése, amely alapján megvalósulhat a vízbázisok biztonságba helyezése. A diagnosztikai vizsgálatok alapján kiadott, védőövezet kijelölő határozatok száma viszont alacsony. Nagy elmaradás van az Észak-magyarországi, a Közép-Duna-völgyi, és a Közép-dunántúli régióban, ahol a legsérülékenyebbek vízbázisok találhatók.

A határozatok hiányának több esetben az oka, hogy a vízbázisok védelmét jelenleg szabályozó védőterületi rendelet sok esetben túl szigorú előírásokat tartalmaz (pl. kisajátítási kötelezettség, mezőgazdaságra vonatkozó követelmények, létesítményekre vonatkozó tilalmak a megfelelő műszaki védelem biztosítása helyett). Jelentős az önkormányzatok ellenérdekeltsége, korlátosak a források, nem méltányosak a költségviselésre vonatkozó szabályok, az eljáráselem is meglehetősen bonyolult, valamint jelenleg nincs végrehajtási határidő, nincsenek megfelelő szankciók.

A lezáratlan – hatósági határozattal, földhivatali bejegyzéssel nem rendelkező – védőterületek hiányában a tulajdonos/üzemeltetők nem tudnak intézkedni, ami viszont veszélyeztet a vízbázisok biztonságba helyezésének folyamatát. Problémát jelent az is, hogy a biztonságba helyezési feladatokat többféle fejlesztési forrás támogatja, így a végrehajtásnak több egymástól független végrehajtójára van. A forrás koordinációs hiánya és az önerő előteremtésének problémája határáttathatja a célok ütemezett elérését.

b) további megvalósítandó intézkedések

Szükséges a vízbázis-védelemre vonatkozó szabályozás továbbfejlesztése, amely figyelembe veszi az 1997 óta bekövetkezett kapcsolódó szabályozásokat, kellően rugalmas és az elfogadott követelmények betartása megvalósítható. Rendezi kell a használó/szennyező fizet elv alapján a költségviselési szabályokat. A vízbázis-védelem költségeit a vízdíjakban érvényesíteni kell.

8.7 Vizes élőhelyekre és védett területekre vonatkozó egyedi intézkedések

Ezen fejezet tartalmazza a védett területekkel kapcsolatos speciális intézkedésekhez (kivéve az ivóvízbázisok védőterületeit és a nitrát- és tápanyag-érzékeny területeket).

14 A vas és a mangán nem okoz egészségügyi problémát, így azok a vízművek, ahol „csak” ez esik kifogás alá, nem tartoznak az EU által támogatott Ivóvíz-minőség-javító Program kereteibe.
8.7.1 Vízes élőhelyekre és természeti értékei miatt védett területekre vonatkozó intézkedések

Felelősök:
KvVM, ÖM

Végrehajtásban érintettek:
- állam (Nemzeti Parkok), önkormányzatok
- vízfolyások, állóvizek, mellékágak, hullámtéri holtmedrek kezelője
- vízhasználók, gazdálkodók

a) jelenleg érvényben lévő intézkedések

A madárvédelmi irányelvben foglaltaaknak megfelelően hazánkban rendszeresen előforduló fajok élőhelyeit figyelembe véve jelölték ki a Különleges Madárvédelmi Területeket. A Különleges Természetreogrzési Területek kijelölése pedig az **élőhely-védelmi irányelvnek** megfelelően történt, az élőhelyek, növény-, illetve állatfajok előfordulása alapján.

Natura2000 területen bizonyos tevékenységek végzéséhez a természetvédelmi hatóság engedélye szükséges, így többek között a gyepek feltöltéséhez, átalakításához; bizonyos fakívgásokhoz, száznál több fő részvételével zajló sportesemény rendezéséhez, vagy sporttőkefektéség folytatásához.

Az intézkedés megvalósítása folyamatban van, az alábbi intézkedések végrehajtása szükséges a továbbiakban:

- Natura 2000 fenntartási tevők készítésére, készítőjére és tartalmára vonatkozó szabályok meghatározása,
- Natura2000 területekre vonatkozóan fenntartási tevők kidolgozása a kormányrendelet szerinti, a területhasználóval egyeztetett tartalommal (ezek megvalósítására az ÜMVP forrást biztosít).

A gyepterületek fenntartására vonatkozó korlátozások ellentételezésére a Natura2000 gyepterületeken gazdálkodók számára az ÜMVP kompenzációt biztosít.

b) további megvalósítandó intézkedések

A védett területekkel kapcsolatos problémák kezeléséhez számos korábban bemutatott intézkedés is hozzájárul. Kiemelkedő az árterek revitalizációja, a partmenti védősávok kialakítása, a területi agrár intézkedések közül a művelési ág és mód váltás, valamint a belvízrendszerként módosítása. Nagyon komoly természetvédelmi jelentősége van a meder rehabilitációjának, mert a természeti mederfejlődés érvényesülésének biztosítása, illetve a revitalizáció „természettőzeli” állapotok kialakítása érdekében (pl. kanyarulatok, mélyedések, változatos vízkezelés létrehozása) a biodiverzitás növelésének fontos eszköze.

A megvalósuló intézkedések tényleges hatásainak előjele és mértéke azonban nagyban függ a megvalósítás, kivitelezés módjától, ezért az intézkedési programok kidolgozásakor, majd a tervek elkészítésekor és a megvalósítás során is a természetvédelmi, ökológiai szempontokat a megvalósítás alapvető szempontjaként kell figyelembe venni. Védett területeken, vagy azok érintettsége esetén a beavatkozásokat egyeztetni kell a nemzeti park igazgatósággal.

Ezen intézkedések igen hatékonyak a védett területek állapotának javításában, azonban szükséges további **ún. egyedi intézkedések** alkalmazása is, amelyek kisléptékűek, többnyire nem
vonakoznak a víztest egészére, hanem annak a védett, vagy védett területtel érintett, esetleg védett területre hatással lévő részére, szakaszára, amelyek a következőben foglalhatók össze.

A védett területen húzódó vízfolyás víztestek közel negyede, az állóvíz víztestek több, mint háromnegyede olyan területen található, vagy olyan területet érint, ahol alapállapot felmérések nem voltak. A főmerült problémák megoldásának tervezéséhez ismerni kell a kiváltó okokat. Ezek meghatározása csak a területek állapotának és az ott lejátszódó ökológiai folyamatoknak az ismeretében lehetséges. Ez azt jelenti, hogy ott, ahol ezt a károsodás mértékében és okainak jelenlétében bizonytalanság szükségessé teszik, elengedhetetlen a védett területek állapotjavításához szükséges intézkedések kiválasztásához, illetve pontosításához, a védett területek alapállapotának felmérése, és az általában elkészítendő kezelési/fenntartási tervek eszerinti kiegészítése.

A védett területeken lévő vízfolyások kb. negyedén, az állóvíz víztestek 10 %-án és néhány felszín alatti vízfolyás más kis részében is, problémát okoz a védett terület fenntartásánál, hogy a meglévő vízfolyásokat más célokra használják fel, ami károsítja az élőhelyeket. Az ökológiai vízkészlet igénybevételével kapcsolatos problémák a védett élőhelyek fenntartását kényszeríti. Károsodott, felszínű vagy felszín alatti vízfolyások védelme, rehabilitációja érdekében szükség lehet a vízhasználatok korlátozására (esetleg megszüntetésére), illetve szükség esetén vízvédelem és vízpótlással lehet elérni a védett területek szárazodásának megállítását. A legproblémásabbnak jelzett területek tehát a Kiskunsági, a Bükk és a Duna-Ipoly Nemzeti Park működési területén belül helyezkednek el.

A mélyárterek, mentett oldali holtmedrek, hullámtéri holtmedrek és mellékágak hasonló szárazodási problémáit speciális megoldásokkal - pl. elárasztás, holtmeder önálló vízpótlása rendszeres vagy időtartományon keresztül - lehet kezelni. A művelési ág (esetleg mód) megváltoztatása rendkívül hatékony eszköz a védett területek állapotának javítására. A művelési ág váltás eredménye lehet új élőhelyek kialakulása, életben maradó élőhelyek kialakulása, és élőhelyek vízellátásának javulása, esetleg szerves terhelésük csökkenése. Mindezekre tekintettel védett területeken a megfelelő művelési formák kialakulását a szabályozó eszközöivel is elő kell segíteni pl. a jó erdőgazdálkodási gyakorlat, vagy vizes élőhelyek fenntartására vonatkozó szabályok kialakítása.

Fontos kiemelni, hogy az egyszerű beavatkozások általában nem elegendőek, a hosszú távú fenntartás elengedhetetlen. Emiatt is a természetes rendszerek önfennségére jobban támogatjak rendszerek felé kell elmozdulni, így csökkentve a fenntartó intézkedések szükségességét. Mind a rehabilitációs tevékenység, mind a területéhszínvonal változás, ha magára hagyják akár visszájára is fordulhat, például, ha az invazív, gyomosító fajoknak teret biztosít a honos fajok hátrányára.

8.7.2 A vizes élőhelyekre vonatkozó intézkedések alkalmazása

A vizes élőhelyekre vonatkozó intézkedések alkalmazásának statisztikai adatait mutatja be a 8-11., 8-12. és 8-13. táblázat. A táblázatok értelmezésével kapcsolatban lásd a 8.2.6 fejezetet.
8-11. táblázat: A vizes élőhelyekre vonatkozó intézkedések alkalmazása a vízfolyás víztesteknél

<table>
<thead>
<tr>
<th>Intézkedés</th>
<th>Előkészítés 2012-ig (az érintett víztestek száma)</th>
<th>A környezeti célkitűzés eléréséhez szükséges alkalmazások (az érintett víztestek száma)</th>
<th>Az állapot javítását és fenntartását szolgáló alkalmazások (az érintett víztestek száma)</th>
</tr>
</thead>
<tbody>
<tr>
<td>VT1: Előhelyek állapotának felmérése, a károsodás okainak feltárása, kezelési, fenntartási terveik kiegészítése</td>
<td>15</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>VT3: Károsodott élőhely védelme, rehabilitációja érdekében felszíni vízhasználatot érintő intézkedés.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VT4: Mentett oldali holtmedrekhöz és mélyárterekhez kapcsolódó élőhelyek vízpótlása, vizellátása</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VT5: Mellékágak és hullámtéri holtmedrek élőhelyeinek vízpótlása, vizellátása, fenékszint emelése</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VT9: Természetvédelmi célú agrárintézkedések</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FI4: Természetes vizekre vonatkozó jó halászati és horgászati gyakorlat megvalósítása</td>
<td></td>
<td>Az összes halászati hasznosítású folyóvízre alkalmazásához</td>
<td></td>
</tr>
<tr>
<td>HA2, TA5, HM1, HM2, HM6: a vízfolyás medrére és hullámtéri érintő intézkedések</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DU1, DU2, DU3, DU4: Duzzasztóművek, zsilipek völgyzárógátas tározók üzemeltetése, hallépcsők építése</td>
<td>12</td>
<td>Függ az előkészítő fázistól</td>
<td></td>
</tr>
</tbody>
</table>

8-12. táblázat: A vizes élőhelyekre vonatkozó intézkedések alkalmazása az állóvíz víztesteknél

<table>
<thead>
<tr>
<th>Intézkedés</th>
<th>Előkészítés 2012-ig (az érintett víztestek száma)</th>
<th>A környezeti célkitűzés eléréséhez szükséges alkalmazások (az érintett víztestek száma)</th>
<th>Az állapot javítását és fenntartását szolgáló alkalmazások (az érintett víztestek száma)</th>
</tr>
</thead>
<tbody>
<tr>
<td>VT1: Előhelyek állapotának felmérése, a károsodás okainak feltárása, kezelési, fenntartási terveik kiegészítése</td>
<td>15</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>VT4: Mentett oldali holtmedrekhöz és mélyárterekhez kapcsolódó élőhelyek vízpótlása, vizellátása</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VT6: Károsodott élőhely védelme, rehabilitációja érdekében állóvíz vízpótlása vagy vízszintzabályozása</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VT9: Természetvédelmi célú agrárintézkedések</td>
<td>5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
VÍZGYŰJTŐ-GAZDÁLKODÁSI TERV

3-3 Fekete-víz vizgyűjtő

<table>
<thead>
<tr>
<th>Intézkedés</th>
<th>Előkészítés 2012-ig (az érintett víztestek száma)</th>
<th>A környezeti célkitűzés eléréséhez szükséges alkalmazások (az érintett víztestek száma)</th>
<th>Az állapot javítását és fenntartását szolgáló alkalmazások (az érintett víztestek száma)</th>
</tr>
</thead>
<tbody>
<tr>
<td>F14: Természetes vizekre vonatkozó jó halászati és horgászati gyakorlat megvalósítása</td>
<td>2012-ig</td>
<td>2015 után</td>
<td>2015-ig</td>
</tr>
<tr>
<td>HA2, TA5, HM1, HM2, HM6: a vízfolyás medrére és hullámterére vonatkozó intézkedések</td>
<td>2012-ig</td>
<td>2015 után</td>
<td>2015-ig</td>
</tr>
</tbody>
</table>

8-13. táblázat: A vizes élőhelyekre vonatkozó intézkedések alkalmazása a felszín alatti víztesteknél

<table>
<thead>
<tr>
<th>Intézkedés</th>
<th>Előkészítés 2012-ig (az érintett víztestek száma)</th>
<th>A környezeti célkitűzés eléréséhez szükséges alkalmazások (az érintett víztestek száma)</th>
<th>Az állapot javítását és fenntartását szolgáló alkalmazások (az érintett víztestek száma)</th>
</tr>
</thead>
<tbody>
<tr>
<td>VT1: Előhelyek állapotának felmérése, a károsodás okainak feltárása, kezelési, fenntartási tervek kiegészítése</td>
<td>2012-ig</td>
<td>2015 után</td>
<td>2015-ig</td>
</tr>
<tr>
<td>VT2: Károsodott élőhely védelme, rehabilitációja érdekében felszín alatti vízhasználatot érintő intézkedés.</td>
<td>2012-ig</td>
<td>2015 után</td>
<td>2015-ig</td>
</tr>
<tr>
<td>FE1, TA3, ill. TA5: A vízhasználatokat, illetve belvízarázó esetén a belvízrendszert érintő intézkedések</td>
<td>2012-ig</td>
<td>2015 után</td>
<td>2015-ig</td>
</tr>
</tbody>
</table>

8.7.3 A halak életfeltételeinek biztosítására kijelölt felszíni vizekre vonatkozó intézkedések

Végrehajtásban érintettek:

- vízfolyás, állóvíz kezelője
- vízhasználók

a) jelenleg érvényben lévő intézkedések

A halak élőhelyének megóvása érdekében védelmet vagy javítást igénylő édesvizek minőségéről EU Irányelv rendelkezik, amelynek alapján kijelölésre kerültek a magyarországi „halas” vizek. A halas vizek megfelelő vízminőségének biztosítása érdekében vízszennyezettségi határértékek kerültek meghatározásra. A halas vizek vízminőségének követelményeinek biztosításához vízvédelmi intézkedési programot kell készíteni a kibocsátók szennyezés-csökkentési intézkedési tervei alapján. A környezetvédelmi hatóság a jogszabályban meghatározott (és az EU Irányelvnek megfelelő) gyakorisággal ellenőrzi a vízszennyezettségi határértékek teljesítését. A szükséges szennyezés-csökkentési intézkedések megvalósítására a Halászati Operatív Program (HOP) források igénybe vehetők.
b) további megvalósítandó intézkedések
A jelenleg érvényben lévő intézkedések végrehajtásán túl nincs szükség további intézkedésre.

8.7.4 Természetes fürdőhelyekre vonatkozó speciális intézkedések

Felelősök:
KvVM, ÖM, EüM

Végrehajtásban érintettek:
♦ fürdőhely üzemeltetője
♦ vízhasználók

a) jelenleg érvényben lévő intézkedések
A fürdőzetei minőségéről EU Irányelv rendelkezik. A hazai szabályozás – összhangban az EU irányelvvel – meghatározott szabályok alapján kijelöli a fürdőzékeket és védőterületeit, környezetminőségi határértékeken alapulva biztosítja a fürdőzékek megfelelő minőségét, és biztosítja a megfelelő tájékoztatást.

b) további megvalósítandó intézkedések
Folyamatos feladat a fürdőzékek minőségének biztosítása, a fürdővízként kijelölt vizek megfelelő vízminőségének elérése illetve fenntartása, illetve a fürdővíz-gazdálkodási intézkedések meghatározása és végrehajtása. Ide tartozik a szennyező víz bevezetésekre vonatkozó szabályozás kiegészítése (elsősorban többlet-fertőtlenítés), üdülőterületek csatornázása, a védőterületek kijelölése a jelenlegi szabályozás alapján, valamint a fürdővíz minőségének biztosítása, ill. az eliszaposodás lelassítása érdekében megvalósítandó kotrás, szárazulat kialakítás, esetleg műtárgyak létesítése. Újabb szabályozási intézkedés nem szükséges.

8.8 Finanszírozási igény, rendelkezésre álló források

A VGT a gazdaság és a társadalom széles körét érinti egyrésztt a megvalósítói oldalról, költségszivesség szempontjából, másrészt az eredmények (hasznok), közvetett, társadalmi hatások "élvezőjeként". Az intézkedések jelentős része állami, közösségi finanszírozást igényel.

A terv tartalmazza azon intézkedések előzetes költségecslését három tervezési időszakra 2015-ig, 2021-ig és 2027-ig, amelyek állami / EU forrásokat igényelnek. A 2015-ig elérhető eredményeket a 2014-2021 közötti költségvetési tervezési időszak finanszírozási lehetőségei is befolyásolják, ugyanakkor a 2021-ig elérhető eredmények fő forrását jelentik.

A terv nem tartalmaz költségecslést azokra az intézkedésekre (főként szabályozás), amelyekhez az érintettek alkalmazkodnak és ezt saját forrásból finanszírozzák a szennyező fizet elv, vagy a felhasználó fizet elv alapján.

költségbecslés készült az alapintézkedésekre általában, valamint az előkészítő és az átfogó intézkedésekre.

A tervezés során részletes, víztestenkénti intézkedések alapján területi szintű költségbecslés is készült a 2014-2027 időszakra, a kiegészítő intézkedésekre.

Alap- és további alapintézkedések országos szinten

Az alap- és további alapintézkedések megvalósításához szükséges becsült finanszírozási igényt és a rendelkezésre álló, valamint tervezett forrásokat foglalja össze a következő táblázat:

8-14. táblázat: Az alapintézkedések beruházási költsége, országos Mrd Ft

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Szennyvíz Program<sup>1</sup> (A), 2007-2015</td>
<td>422,4</td>
<td>106</td>
<td>106</td>
<td></td>
</tr>
<tr>
<td>Ivóvízminőség-javító Program<sup>2</sup> (A)</td>
<td>196,2</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Vízbázisvédelem szolgáltatói feladatok (TA), 2015-ig</td>
<td>5,6<sup>4</sup></td>
<td>36</td>
<td>26</td>
<td>62</td>
</tr>
<tr>
<td>Országos Kármentesítési Program<sup>3</sup> (TA)</td>
<td>38,1</td>
<td>12</td>
<td>38</td>
<td>50</td>
</tr>
<tr>
<td>Hulladékgazdálkodás (TA) – rekvítiváció+rendszerek</td>
<td>236,4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrát Akcióprogram (A) és felülvizsgálata</td>
<td>252,7<sup>4</sup></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Helyes Mezőgazdasági és Környezeti Állapot (TA)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Natura 2000 és természeti értéki miatt védett területek</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vízfolyásokat érintő beavatkozások</td>
<td>28,6</td>
<td>11</td>
<td>29</td>
<td>40</td>
</tr>
<tr>
<td>Állóvizeket, holmedreket és mellékágakat érintő beavatkozások</td>
<td>5</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Összesen</td>
<td>1 180,0</td>
<td>170</td>
<td>103</td>
<td>50</td>
</tr>
</tbody>
</table>

¹ A program teljes költsége 783,9 Mrd Ft. A VKI időszakára eső forrásigény a lezárt; ill. folyamatban lévő beruházás 2007. 12. 31-ig történő figyelembe vételével, a Budapesti Központi Szennyvízisztito 3. fokozatának kiépítése nélkül
² Az Ivóvízminőség-javító Program teljes költsége 246 Mrd Ft.
⁴ egyes ÚMVP célprogramok (agrár-környezetvédelmi, erdősítési stb.) előnyben részesítik a nitrát-érzékeny és ezen belül is a vízbázisvédelmi védőterületen gazdálkodókat, ezen források 60 %-ával számolva.

Kiegészítő intézkedések országos és alegységi szinten

a) Intézkedések előkészítése és átfogó intézkedések országos szinten

Az előkészítő és átfogó intézkedések forrásigénye (fejlesztés és működtetés együtt) 2010-2027-ig 18 év alatt, meghaladjá a 70 Mrd Ft-ot, a fejlesztési forrásszükséglet mintegy 5,5 %-a, amelynek mintegy felét szükséges 2015-ig megvalósítani. Ennek is jelentős része (pl. monitoring és

8-15. táblázat: Előkészítő és átfogó intézkedések költségei, Mrd Ft

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A) Előkészítő vizsgálatok</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intézkedések előkészítése</td>
<td>0,9</td>
<td>0,1</td>
<td></td>
<td></td>
<td>1,0</td>
</tr>
<tr>
<td>Védett területekre vonatkozó előkészítő vizsgálatok</td>
<td>2,5</td>
<td>0,3</td>
<td></td>
<td></td>
<td>2,8</td>
</tr>
<tr>
<td>B) Átfogó intézkedések</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jogalkotási feladatok</td>
<td>0,3</td>
<td></td>
<td></td>
<td></td>
<td>0,3</td>
</tr>
<tr>
<td>Vízgyűjtő-gazdálkodási tervezéssel kapcsolatos feladatok</td>
<td>2,5</td>
<td>2,7</td>
<td>2,7</td>
<td>1,9</td>
<td>7,3</td>
</tr>
<tr>
<td>Hatósági és igazgatási munka erősítése</td>
<td>5,9</td>
<td>1,8</td>
<td>1,8</td>
<td></td>
<td>9,5</td>
</tr>
<tr>
<td>Monitoring rendszerek</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- fejlesztése, egyszeri felmérések</td>
<td>3,2</td>
<td>10,7</td>
<td></td>
<td></td>
<td>10,7</td>
</tr>
<tr>
<td>- működtetési többletköltsége</td>
<td>2,9</td>
<td>10,6</td>
<td>10,6</td>
<td></td>
<td>24,1</td>
</tr>
<tr>
<td>Informatikai rendszerek</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- fejlesztése</td>
<td>1,2</td>
<td>0,9</td>
<td></td>
<td></td>
<td>0,9</td>
</tr>
<tr>
<td>- működtetési többletköltsége</td>
<td>0,1</td>
<td>0,1</td>
<td>0,1</td>
<td></td>
<td>0,3</td>
</tr>
<tr>
<td>K+F feladatok</td>
<td>4,5</td>
<td>0,4</td>
<td></td>
<td></td>
<td>4,9</td>
</tr>
<tr>
<td>Képességfejlesztés, szemléletformálás</td>
<td>3,9</td>
<td>3,0</td>
<td>2,0</td>
<td></td>
<td>8,9</td>
</tr>
<tr>
<td>C) Egyéb tervezési feladat</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Területi vízminőségi kárelhárítási tervek kidolgozása</td>
<td>0,5</td>
<td></td>
<td></td>
<td></td>
<td>0,5</td>
</tr>
<tr>
<td>Mindösszesen</td>
<td>6,9</td>
<td>35,8</td>
<td>19,0</td>
<td>16,4</td>
<td>71,2</td>
</tr>
</tbody>
</table>

b) Beruházások, fejesztések országos és alegységi szinten

Országos költségbecslés

8-16. táblázat: A beruházási, fejlesztési jellegű kiegészítő intézkedések költsége, Mrd Ft

<table>
<thead>
<tr>
<th>Intézkedések</th>
<th>2007-2013¹</th>
<th>-2015²</th>
<th>-2021</th>
<th>-2027</th>
<th>Összesen 2014-2027</th>
</tr>
</thead>
<tbody>
<tr>
<td>A) Környezeti infrastruktúra rendszerek</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Szennyvízkezelés a Szennyvíz Programon felül</td>
<td>43,1⁴</td>
<td>48</td>
<td>8</td>
<td>56</td>
<td></td>
</tr>
<tr>
<td>Csatományzás vagy szakszerű egyedi, ill. település szintű szennyvízkezelés és – elhelyezés megoldása³</td>
<td>63</td>
<td>95</td>
<td></td>
<td>158</td>
<td></td>
</tr>
<tr>
<td>Vízellátó rendszerek rekonstrukciója⁵</td>
<td>n.a</td>
<td>n.a</td>
<td>n.a</td>
<td>n.a</td>
<td></td>
</tr>
<tr>
<td>Csatoma rendszerek rekonstrukciója⁵</td>
<td>n.a</td>
<td>n.a</td>
<td>n.a</td>
<td>n.a</td>
<td></td>
</tr>
<tr>
<td>Belterületi csapadékvíz-gazdálkodás a VKI szerint⁶</td>
<td>n.a</td>
<td>n.a</td>
<td>n.a</td>
<td>n.a</td>
<td></td>
</tr>
<tr>
<td>Hulladéklerakók rekultivációja⁷</td>
<td>20</td>
<td>20</td>
<td>n.a</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>B) Vízfolyások és állóvizek hidromorfológiai állapotát javító intézkedések</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vízfolyások</td>
<td>74,8⁸</td>
<td>31</td>
<td>78</td>
<td>29</td>
<td>138</td>
</tr>
<tr>
<td>Állóvizek</td>
<td>43</td>
<td>34</td>
<td>4</td>
<td>81</td>
<td></td>
</tr>
<tr>
<td>C) Vízvédelmi zonarendszer kialakítása, területi agrár-intézkedések</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kötelező (kompenzáció 5 évre)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>erózió-érzékeny területek³</td>
<td>7</td>
<td>11</td>
<td></td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>belvíz-érzékeny területek</td>
<td>3</td>
<td>7</td>
<td></td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>part menti védősav</td>
<td>2</td>
<td>5</td>
<td></td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>ártéri/hullámtéri gazdálkodás a vízvédelmi puffersávban</td>
<td>1</td>
<td>1</td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Önkéntes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>erózió-érzékeny területek</td>
<td>168,5</td>
<td>26</td>
<td>64</td>
<td>79</td>
<td>168</td>
</tr>
<tr>
<td>belvíz-érzékeny területek</td>
<td>38</td>
<td>95</td>
<td>138</td>
<td></td>
<td>271</td>
</tr>
<tr>
<td>part menti védősav</td>
<td>2</td>
<td>5</td>
<td>0</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>ártéri/hullámtéri gazdálkodás a vízvédelmi puffersávban</td>
<td>5</td>
<td>13</td>
<td>13</td>
<td>31</td>
<td></td>
</tr>
<tr>
<td>Összesen 2007-2013</td>
<td>286,4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Összesen 2014-2027</td>
<td>178</td>
<td>444</td>
<td>366</td>
<td>987</td>
<td></td>
</tr>
<tr>
<td>Mindösszesen</td>
<td>1273,4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

¹ Az EU támogatási források megegyeznek a tervezési dokumentumokban található összegekkel, az abban használt árfolyamon (245,5 Ft/EUR) kerültek bemutatásra.
² A 2015-ig megelőző forrásigény alapvetően a 2014-2020-ig tartó EU támogatási időszak forrásaitól finanszírozható, hasonlóképpen a 2021-ig szükséges becsült forrásokhoz, Amennyiben azonban lehetőség nyílik a 2007-2013 időszakban rendelkezésre álló források átcsoportosítására, úgy ezen forrásokat is fel lehet használni a VKI célokat finanszírozására.
³ Amennyiben a tervezett kiegészítő fejlesztések ott, ahol ez műszakilag megengedett egyedi megoldások, akkor kisebb összeg szükséges, mint akkor ha mindenhol csatornázás valósul meg, ekkor a költségek közel 40%-al nőnek. Feltételezésünkre szerint a 2016-2021 között 63 Mrd Ft, később 95 Mrd Ft szükséges. A teljes összeggel kifejezetten a feladatot elégítő akkori bereálásokkal biztosítható.
⁴ Az elmaradt rekonstrukciók finanszírozási rendszerének kidolgozása után (2012) becsülhető.
⁵ Hasonló követelmények esetleges többletköltsége, amelynek forrásigénye a program-alkotás és szabályrendszer kidolgozása során becsülhető meg.
⁶ Az OHT alapján a teljes forrásigény 80 Mrd Ft volt 2003. évi árákon, amelynek megvalósításához a KEOP forrásokat biztosít.
⁷ KEOP (2007-2013) Komplex vízvédelmi beruházások 100 %-a, valamint a ROP-ok Regionális vízvédelmi intézkedések 20 %-a fejlesztéseként.
⁸ Az erózió-érzékeny területeken a megelőző kötelező előírásokon kívül (HMKÁ, JFGK) a VGT nem tervez további intézkedést. A becsült költség a többet területként bevont terület átalakítása 5 évre biztosított kompenzáció összege.

A szennyvízkezeléssel, elhelyezéssel kapcsolatos költségek mintegy 210 Mrd forintot tesznek ki.
A vízfolyások hidromorfológiai állapotát javító intézkedések becsült forrásigénye, amit 2027-ig ütemezetlenen kell végrehajtani, várhatóan mintegy 138 Mrd Ft. E költségek döntő része, mintegy 80%-a mederrehabilitáció. A mederrehabilitációra vonatkozóan az itt szerepelő összeg felső költségbeclésesnek tekinthető, a részletes tervek készítésekor várhatóan az összeg akár 20-30%-al is csökkenhet. Az állóvizekre vonatkozóan is a hidromorfológiai beavatkozások mintegy 80 milliárd forintba fognak kerülni.

Az agrár-intézkedéseket érintő teljes forrásigény 2027-ig két EU költségvetési időszakra meghaladja az 525 Mrd forintot, amely összeg a vízvédelmi területek lehatárolásával pontosodni fog. A tervezett forrásigény a 2007-2013 időszakra becsült VKI célú ÚMVP forrásoknál kevesebb ugyan, azonban a források jelentős részét kitevő agrár-környezetvédelmi intézkedések jelenlegi összege nem minden célprogram esetében VKI szempontok szerint kerül felhasználásra, ezért a jövőben a vízvédelmi zónarendszerre vonatkozó intézkedések hangsúlyosabb támogatása szükséges, kiemelten az erdő-, gyep- és vizes élőhely művelési ágváltások, környezetkímélő agrotechnikai módszerek elterjesztése.

Alegység szintű költségbeclés
A költségtervezés a 2014-2027 közötti időszakra készült a víztest szintű intézkedések alapján.

8-17. táblázat: A beruházási, fejlesztési jellegű kiegészítő intézkedések költsége, alegységi Mrd Ft

<table>
<thead>
<tr>
<th>Intézkedések</th>
<th>2015-ig (2)</th>
<th>2021-ig</th>
<th>2027-ig</th>
<th>Összesen</th>
</tr>
</thead>
<tbody>
<tr>
<td>A) Környezeti infrastruktúra rendszerek</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Szennyvízkezelés a Szennyvíz Programon felül</td>
<td>0,0</td>
<td>0,8</td>
<td></td>
<td>0,8</td>
</tr>
<tr>
<td>Csatomázas vagy szakszerű egyedi, ill. település szintű szennyvíztisztítás és – elhelyezés megoldása (3), (4)</td>
<td></td>
<td>7,5</td>
<td>4,4</td>
<td>7,9</td>
</tr>
<tr>
<td>Vízellátó rendszerek rekonstrukciója (5)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Csatorna rendszerek rekonstrukciója (5)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Belterületi csapadékvíz-gazdálkodás a VKI szerint (6)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hulladéklerakók rekultivációja (7)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B) Vízfolyások és állóvizek hidromorfológiai állapotát javító intézkedések (8)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vízfolyások</td>
<td>0,4</td>
<td>2,1</td>
<td>0,7</td>
<td>3,1</td>
</tr>
<tr>
<td>Állóvizek</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
</tr>
<tr>
<td>C) Vízvédelmi zónarendszer kialakítása, területi agrár-intézkedések</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kötelező (kompenzáció 5 évre)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>erózió- érzékeny területek (9)</td>
<td>0,6</td>
<td>1,6</td>
<td>0,0</td>
<td>2,3</td>
</tr>
<tr>
<td>belvíz-érzékeny területek</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
</tr>
<tr>
<td>part menti védősáv</td>
<td>0,0</td>
<td>0,1</td>
<td>0,0</td>
<td>0,1</td>
</tr>
<tr>
<td>ártéri/hullámtéri gazdálkodás a vízvédelmi puffersávban</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
</tr>
<tr>
<td>Önkéntes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>erózió-érzékeny területek</td>
<td>1,2</td>
<td>2,9</td>
<td>3,9</td>
<td>8,0</td>
</tr>
<tr>
<td>belvíz-érzékeny területek</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
</tr>
<tr>
<td>part menti védősáv</td>
<td>0,0</td>
<td>0,1</td>
<td>0,0</td>
<td>0,1</td>
</tr>
<tr>
<td>ártéri/hullámtéri gazdálkodás a vízvédelmi puffersávban</td>
<td>0,1</td>
<td>0,2</td>
<td>0,2</td>
<td>0,5</td>
</tr>
<tr>
<td>Összesen 2014-2027</td>
<td>2,4</td>
<td>15,2</td>
<td>5,2</td>
<td>22,8</td>
</tr>
<tr>
<td>Mindösszesen</td>
<td></td>
<td></td>
<td></td>
<td>22,8</td>
</tr>
</tbody>
</table>
c) Működtetési források országos szinten

A források tervezésekor nem elégséges a fejlesztési, beruházási jellegű források felmérése, hanem a működési, fenntartási (beleértve a tisztán működési, fenntartási jellegű és a beruházások eredményeinek megőrzését biztosító működési, fenntartási forrásokat is) forrás-igény felmérése is szükséges. Az előzetes költségbecslés szerint, ahogy ütemezetten megvalósulnak a hidromorfológiai beavatkozások, akkor a 2010-2015 közötti időszakban már összesen 4 Mrd forint körüli fenntartási költség merül fel. Ez a fenntartási igény 2016-2021 között évi 8 Mrd forint lesz.

E költségeket a hidromorfológiai beavatkozások megvalósítói, azaz a KÖVIZIG-ek, Nemzeti Parkok, társulatok és önkormányzatok költségvetésében biztosíthati. A jelentős összegű pénzigényből látható, hogy nemcsak a fejlesztési források megszerzése a fontos, hanem a költségvetési intézmények működési, fenntartási forrásainak stabil, államilag garantált finanszírozási rendszerének kialakítása is elengedhetetlen.

8.9 Nemzetközi együttműködés, a határon átnyúló problémák kezelése

A víztestek minősítése során több olyan problémával találkozhatunk, amely esetében a közös, határokkal osztott víztestek, vagy a határon kapcsolódó víztestek jó állapotának elérése csak valamelyik szomszédos ország intézkedései, vagy Magyarországgal közös intézkedései révén lehetséges. Mindkét esetben fontos kérdés, hogy a szomszédos ország:

- ismeri-e a problémát, illetve ha EU tagország, az adott kapcsolódó víztest minősítése alapján beazonosítható-e a hazai minősítésnél figyelembe vett állapotrontó probléma,
- tervez-e intézkedéseket a számunkra fontos probléma kezelésére,
- illetve tagország esetében mikorra kívánja a jó állapotot elérni.

A fentiek alapján lehet a hazai VGT-ben meghatározni, hogy szükséges-e kiegészítő intézkedések vagy akár közös programok a jó állapot elérésére,

- szükségeseik kiegészítő intézkedések vagy akár közös programok a jó állapot elérésére,
- a tervezett intézkedések alapján mikorra tervezhető a jó állapot, vagy potenciál.

A fentiek mindenképpen igénylik az elkészülő országos illetve részvízgyűjtő VGT-k határmenti összehangolását és egyeztetését. Ennek hiányában egy sor vállalásunk nem teljesíthető, hiszen a jó állapotot hazai intézkedésekkel elérni nem lehet. Problémát jelenthet, ha a külföldi fél az adott víztestet más módon minősítve nem tervez intézkedéseket. Ekkor egyeztetni kell a mérések és az osztályozás módszertanát is.

A legfontosabb nemzetközi beavatkozást igénylő alegységi probléma a Drávahoz köthető. A Dráva vízjárását a horvát erőművek léte és csúcscsához járatásának üzemrendje jelentősen befolyásolja, ez feszültséges országon részben napi vízszintezredésre szükséges (Az ortoló mai állapotának 110-130 cm-es vízjárásokat jelent a kisvizes időszakban), részben semleges, mely az eredményezett. A Dráva folyó alsó szakaszán magyar oldalon 83, míg horvát oldalon 63 szabályozási mű épült. Az utóbbi következtében a mellékk és holtágak vízutánpótlása és kapcsolatok a főmederrel gyakorlatilag megszűnt, és ezek újra bekapcsolása a rendszerbe fontos feladattá vált.
9 Kapcsolódó fejlesztési programok és tervek

A Víz Keretirányelv előírása szerint a vízgyűjtőkhöz kapcsolódó, a vizek állapotát befolyásoló programokat és terveket figyelembe kell venni vízgyűjtő-gazdálkodási tervezés során annak érdekében, hogy az intézkedési terv hozzájáruljon a régiók kiegyensúlyozott fejlődéséhez, de annak érdekében is, hogy ezek ne akadályozzák meg a kívánt állapotok elérést.

A vízgyűjtő-gazdálkodási tervek készítésekor alkalmazni kell más direktívák által meghatározott szakpolitikai előírásokhoz is, hiszen azok jogilag egyenrangúak a vízügyi politikát meghatározó VKI-val. Célszerű ezért a víz védelmének és a fenntartható gazdálkodásnak a közösségi politika más, olyan területeibe való integrálása, mint az energia-, a közlekedés-, a mezőgazdasági, a halászati, a regionális és idegenforgalmi politika. Ennek a tervnek alapot kell biztosítania a folyamatos párbeszédhez és a fokozottabb integrációra törekvő ágazati stratégiák fejlesztéséhez.

A különböző szakterületek célkitűzéseinek megismerése érdekében felmérésre kerültek a szakpolitikai határozatok, országos stratégiák és programok. A programok gyakorlati megvalósítása projekteken keresztül történik, ezért összegyűjtöttek a vízgyűjtőkkel kapcsolatos országos, regionális és területi projekteket is. Az alegységi szintű programok, tervek és projektek listáját a 9-1. melléklet tartalmazza.

Abban az esetben amennyiben egy adott stratégia, program, vagy projekt VKI szempontjából vizsgálandó minősítést kapott, akkor feltételezhető, hogy az a fejlesztés, vagy annak valamilyen eleme esetleg akadályozza, vagy meghiúsítja a vizek jó állapotának elérést, ezért a VKI 4. cikkely 7. pontjában biztosított kivételek egyikének alkalmazása, azaz VKI szerinti hatásbecslés szükséges. A VKI 4. cikk 7. pontja szerinti vizsgálat, illetve igazolás eredménye alapján megvalósított fejlesztés nem jelenti a Víz Keretirányelv előírásainak megszegését még akkor sem, ha az érintett vizek jó állapotát emiatt nem lehet elérni.

Több olyan jelentős, a fenntartható vízhasználatok keretébe illeszhető igény és probléma van Magyarországon, amelyek megoldásához a jövőben új létesítményeket kell megvalósítani. Ezek egy része a jó állapottal nem összeegyeztethető hatással lehet a vizek állapotára.

A VKI (4. cikk (7)) szerint igazolni kell, hogy a tervezett tevékenységek megvalósítása elsőrendű közérdek, és/vagy a környezet és a társadalom számára a VKI célkitűzéseinek teljesítésével elérhető előnyöket felülmúlják az emberi egészség és biztonság megőrzésében, vagy a fenntartható fejlődésben jelentkező előnyök.
A VKI 4. cikk 7. szerint nem történik meg a keretirányelvi célok megszegése ha:

1. A jó állapot vagy potenciál elérése, vagy ezek romlásának megelőzése a felszíni víztest fizikai jellemzőiben (hidrológiai, morfológiai jellemzők változása), vagy egy felszín alatti víztest vízszintjében bekövetkezett változást okozó új beavatkozás (new modification) következménye, akkor megengedett, hogy a jó állapotot/potenciált ne érje el az adott víztest, az állapot romlása (osztályhatár átlépés) is bekövetkezhet. A 4. cikk 7. szerint továbbá megengedett olyan fejlesztés megvalósítása, amelynek következtében a negatív hatás/romlás az osztályhatárokon belül marad, ekkor a 4.7 cikk szerinti mentesség alkalmazására nem kerül sor.

2. Új fenntartható fejlesztési tevékenységek következtében – amennyiben nem előhúzható meg – megengedhető az állapot romlása, igaz, hogy csak a kiválóról a jóra, viszont a jó állapotból mérsékelt, vagy mérsékeltből gyengébe kerülés kizárt (azaz a vízminőségi paraméterek csak annyira romolhatnak le, hogy a víztest állapota a minősítésének megfelelő osztályhatáron belül maradjon). A vizsgálandó fejlesztések például:

- egyes árvízvédelmi létesítmények (ártéri beavatkozások, árvíztározók, műtárgyak),
- a hajóhatóságot biztosító folyószabályozási beavatkozások, kikötőfejlesztések,
- dombvidéki tározók építése (vízgazdálkodási és árvízbiztonsági céllok),
- egyes belvízvédelmi létesítmények,
- a vízerő-hasznosításhoz szükséges egyes műtárgyak,
- új vízbázisok igénybevétele közüzemi ipari és közüzemi felügyelettel,
- új, vagy nagyobb kapacitású szennyvízbevezeték-készletek,
- ipari szennyvízbevezetések,
- turisztikai létesítmények

Azonban mind a két esetben (a VKI 4. cikk (7) szerint) a vízgyűjtő-gazdálkodási terv(ek)ben igazolni kell, hogy a terv(ek) jövőhagyói

- mindent megtesznek az állapotra gyakorolt kedvezőtlen hatás mérséklésére, és
- a célkitűzéseket 6 évente felülvizsgálják, ill.
- az új változással járó beavatkozás, vagy fejlesztési cél elsőrendű közérdek, és/vagy a környezet és a társadalmi szempontokra vonatkozóan az VKI célkitűzéseinek teljesítésével elérhető előnyöket felülmúlják az emberi egészség terén bekövetkező új változások vagy módosulások, valamint az emberek biztonságának megőrzésében vagy a fenntartható fejlődésben jelentkező előnyök (pl. az árvízvédekezés, a belvizek elvezetése élet és vagyonbiztonsági szempontból esetenként elkerülhetetlen), valamint
- a beavatkozással vagy fejlesztéssel érintett víztest állapotának megváltoztatását eredményező fent említett előnyös célkitűzések a műszaki megvalósíthatóság, vagy az aránytalan költségek miatt nem érhetők el más, jelentős mértékben jobb környezeti állapotot eredményező eszközöket.
- a beavatkozás vagy fejlesztés más víztestre vonatkozó VKI célok elérését állandó jelleggel nem zárja ki, vagy nem veszélyezteti.

E tervekre nézve a fent megalakított szempontok szerinti környezeti-, társadalmi-, gazdasági vizsgálatok kötelezőek. Igazolni kell, hogy minden megvalósítható lépést megtették-e annak érdekében, hogy csökkentsék a víztest állapotára gyakorolt kedvezőtlen hatást. Tehát a VGT-be akkor kerülhet be egy új projekt (nem mint VKI intézkedés), ha a kötelező vizsgálatokat elvégezték. Ilyen vizsgálat még nem történt egyes nagy jelentőségű infrastrukturális terveknél, mint pl.
Csongrádi vízlépcső, Duna hajózhatóság. Ha a szükséges vizsgálat megtörtént, és az eredményei kedvezőek akkor a projekt, mint új fejlesztés a mentességek egyik indokaként kerülhet be a VGT-be. Egy, a VGT-be nem került projekt megvalósítására akkor és csak akkor kerülhet sor, ha ezeket a vizsgálatokat elvégzik és dokumentálják, a megfelelő módosításokat végrehajtják a projekten. Szélső esetben előfordulhat, hogy szükség esetén elállnak a projekt végrehajtásáról. A vizsgálatok hiányában a terv csak a következő VGT felülvizsgálatkor 2015-ben szerepelhet, mint új fejlesztés. A VKI nem zárja ki egy a vizek állapotát nem javító, esetleg rontó új fejlesztés megvalósulását, ha a szükséges igazolás megtörtént. A fenti vizsgálatok elvégzése és beépítése az engedélyezési eljárásba eredményezni fogja a negatív hatások elkerülését, illetve minimalizálását. A VKI 4. cikk 7. szerinti vizsgálatok kötelezőek, amelyre vonatkozó szabályozási javaslatot az Intézkedési Program (8. fejezet) tartalmaz.
10 A közvélemény tájékoztatása

10.1 A tájékoztatás folyamata

Az Európai Unióhoz történt csatlakozásunk új feltételeket teremtett vízgazdálkodási feladataink megvalósításában is. A Közösség egységes vízügyi politikája, melyet a röviden Víz Keretirányelvnek nevezett joganyag foglal össze, egyrészt megerősíti a hazánkban már több évtizede elterjedt vízgyűjtő-gazdálkodási szemléletet, de túl is lép rajta, nem csupán a szakemberekre ró ki sokrétű feladatot, de a társadalom tagjainak felelősségteljes magatartását is elvárja.

A Keretirányelv kimondja, hogy a társadalmat be kell vonni a vízgyűjtő-gazdálkodási tervezésbe (VGT). Vizeink védelme hatékonyabb lesz, ha az állampolgárok, érdekelte felek, civil szervezetek megismerik a vízgyűjtő-gazdálkodási folyamatokat, és részt vesznek a tervek készítésében és végrehajtásában. A „társadalom bevonása” annak lehetővé tétele, hogy a társadalom, demokratikus jogait gyakorítsa a vízügyben, és az ezen felbukkanó kockázatok kibontakozására. A társadalom bevonás (a már Magyarországon is használt angol rövidítés szerint PP) nem arról szól, hogy egy kész tervet kell elfogadni az érintettekkel. A közös gondolkodás, a problémák, célok, lehetséges intézkedések és azok várható költségeinek megvitatása és ezek értelmében a tervezők által elképzelt terv(ek) átdolgozása, továbbfejlesztése és ezek szerinti megvalósítása a PP folyamat lényege és eredménye.

A társadalom bevonás célja, hogy az érintettek ismeretei, nézetei, szempontjai időben felszínre kerüljenek, a döntések közös tudáson alapuljanak és realisztán végrehajtható, közösen elfogadott intézkedések alkossák majd a tervet. A VKI célja a víztestek jó állapotát érni és megpróbálja megvalósítani. Ezért elengedhetetlen, hogy az érintett területeken megfelelő környezettek (természetvédők, horgászok, gazdák, turizmusból élők, erdészetek, stb.), valamint a lakosság és annak szervezetei (pl. önkormányzatok) részt vegyenek a vízgyűjtő-gazdálkodási tervezési folyamatban.

A társadalom bevonása a vízgyűjtő-gazdálkodási tervezési folyamatnak nem egy külön lépése. A VKI végrehajtásának legjobb gyakorlata csak úgy valósítható meg, ha a tervezési folyamat minden fontos lépésein végrehajtásába bevonjuk a társadalmat.

A társadalom bevonás kezdete

A társadalom bevonása a vízgyűjtő-gazdálkodási tervezési folyamatnak nem egy külön lépése. A VKI végrehajtásának legjobb gyakorlata csak úgy valósítható meg, ha a tervezési folyamat minden fontos lépésein végrehajtásába bevonjuk a társadalmat.

A társadalom bevonás kezdete

A társadalom bevonása a vízgyűjtő-gazdálkodási tervezési folyamatnak nem egy külön lépese. A VKI végrehajtásának legjobb gyakorlata csak úgy valósítható meg, ha a tervezési folyamat minden fontos lépésein végrehajtásába bevonjuk a társadalmat.
mintaterületen, és az ott, valamint az ún. első konzultációs fázis során szerzett tapasztalatok alapján véglegesítették 2007-ben. A stratégia figyelemben veszi a Duna-vízgyűjtőkerületre korábban kidolgozott ICPDR stratégiát, a Közös Megvalósítási Stratégia keretében készült társadalom bevonási útmutatót, valamint a HarmoniCOP nevű EU projekt eredményeit is.

A kidolgozott társadalom-bevonás stratégiára országos, részvízgyűjtő és területi szinten, elsősorban a társadalom széles körének megkeresésével folytatott írásbeli és szóbeli konzultációra, és az ezekben a mintában létrehozott tanácsok keretében megvalósított aktív társadalom-bevonásra ad javaslatot. (A tanácsokról lásd lentebb.) Az információkhoz való hozzáférést minden szinten és minden esetben biztosítani kell az érintettek számára.

2007-ben, a fenti projekt keretében egy mérsékelt volúmenű, háromhétes „víz image” kommunikációs kampányra is sor került, mely a későbbi VKI-hoz kapcsolódó tájékoztatást volt hivatott előkészíteni.

A második szakasz a konzultációs folyamatban (2008. I. félév)

A konzultáció alapját képező vitaanyag a hazai adottságok és meghatározó folyamatok áttekintése után Magyarságának a Duna medencében elfoglalt helyzetét figyelembe véve foglalta össze az ország, ill. a négy hazai részvízgyűjtő jelentős vízgazdálkodási kérdéseit. A dokumentum a problémákat elsősorban abban a szempontból mutatta be, hogy azok hogyan viszonyulnak az összérező célhoz (a vizek jó állapota) annak számbavételével, hogy a tervezés milyen fő kérdésekre terjedjen ki.
Az írásos konzultáció eredeti június 22-ii határidejét 2008. július 31-ig meghosszabbították, mely időpontig 59 írásbeli észrevétel érkezett a Vízügyi és Környezetvédelmi Központi Igazgatóság (VKKI) címére.

A harmadik szakasz a konzultációs folyamatban (2009. év)

2009-ben került sor a VGT tervezetek, kiemelten az intézkedési programok társadalmi vitájára a harmadik konzultációs folyamat keretében. A folyamat négy lehetőséget kínált a vízgazdálkodásban, illetve vízhasználatban érdekeltek, általában a társadalom számára a vízgyűjtő-gazdálkodási tervezésbe való bekapcsolódásra.

a) Írásbeli konzultáció. Folyamatos internetes írásbeli véleményezési lehetőség az elkészült anyagokról, tervezetekről, amelyeket a www.vizeink.hu honlapon kerültek közvetlenül, e-mailben kaptak folyamatos tájékoztatást. Az érintettek adatbázisa országosan közel 600 e-mail címet tartalmazott, amit az alegységi, egyenként 100-400 címet tartalmazó adatbázisok egészítették ki. Az on-line véleményküldési lehetőség mellett a javaslatok hagyományos postai levélben is beküldhetők voltak a tervezői konzorcium címére. A különböző csatornákon kapott véleményeket és módosító javaslatokat a vélemények kezelője a dokumentumokhoz és a tervezési egységekhez kapcsolódóan tartotta nyilván, és rendszeresen, írásban eljuttatta a tervezőkhöz feldolgozásra. Minden beérkezett vélemény folyamatosan megtekinthető volt a www.vizeink.hu oldalon.

2009. május végére elkészült a 42 tervezési alegység vízgyűjtő-gazdálkodási terv tervezetét bemutató közérthető vitaanyagok (alegységi konzultációs anyagok), amelyek elérhetőek és véleményezhetőek voltak 2009. július 31-ig a honlapon. Ezek a konzultációs anyagok az alegységhez tartozó vízfolyások, tavak, felszín alatti vizek állapotát, a jellemző okokat és az állapotjavítást célzó intézkedési javaslatokat tartalmazzák közérthető formában.

A Fekete-víz konzultációs anyagával kapcsolatban 2 civil szervezet fogalmazott meg írásos véleményt.
10. fejezet A közvélemény tájékoztatása

143

VÍZGYŰJTŐ-GAZDÁLKODÁSI TERV
3-3 Fekete-víz vízgyűjtő

- Augusztus végéig felkerültek a honlapra az országos és részvízgyűjtő VGT terv kéziratok, majd szeptember elején az alegységi tervek közrásat, amelyeket 2009. november 18-ig lehetett véleményezni.
- A Fekete-víz tervezési alegység kéziratoi közvetlenül kapcsolódóan ezen határidőig mindössze 1 civil szervezet 4 írásos véleménye érkezett meg.
- Az írásbeli véleményezés a területi és tematikus fórumokon elinduló személyes vitát is kiegészítette. A fórumokon felvetődött kérdéskörök megtárgyalása, a javaslatok megfogalmazása nem ért véget a helyszínen, hanem folytatódott tovább az internetes honlapon elérhető témaspecifikus fórum-felületen.

b) Alegységi fórumok

Mind a 42 alegységi fórum megtartásra került 2009. június végétől július végéig. E fórumok biztosították a konzultáció során a kisebb léptékű, helyi problémákat is kezelni tudó területi lefedettséget. A fórumok nyilvánosak és nyitottak voltak minden érdekelő számára. A területen érintett érdekkörök közvetlen értesítést és meghívót kaptak az eseményekre. Az alegységi fórumok lebonyolítása a következő lépésekre vett sor:

2009 tavaszán elkezdődött a vízgyűjtő-gazdálkodási tervezésbe bevonni kívánt szereplők feltérképezése, az érintettek elemzése (stakeholder elemzés), majd pedig ezek alapján kontaktilista készült az alegységére vonatkozóan. Az érintettek adatbázisa alegység szinten a következő érdekkörökre vonatkozóan készült.

Szakmai közigazgatási szervezetek (MgSzH, ÁNTSz, fejlesztési ügynökségek, falugazdászok, állami erdészetek, fogyasztóvédelem, katasztrófavédelem, földhivatalok) területi (megyei, kistérségi, regionális) szervei
Megyei és települési önkormányzatok, önkormányzati szövetségek, kistérségi társulások
Civil szervezetek (környezetvédelem, turizmus, sport, oktatás, településfejlesztés stb.)
Gazdasági szektor civil és érdekvédelmi szervezetek (ipari, mezőgazdasági, mérmői kamarák, erdő- és mezőgazdasági szövetségek és szervezetek, ipari és kereskedelmi szövetségek, terméktanácsok, gyógyászat, turizmus és vidékfejlesztés képviseletei, energiaszektor, veszélyes üzemek, nagy vízhasználók)
Vízgazdálkodási ágazat szereplői (vízitársulatok, víziköznmű vállalatok és szövetségek, strand- és kikötőüzemeltetők, halászat és horgászat szervezetek, tavak/tározók, vízfolyások és műtárgyak tulajdonosai és kezelői)
Tudományos és oktatási intézmények és szervezetek (kutatóintézetek és -vállalatok, egyetemek és főiskolák szakirányú karjai, szakmai egyesületek)

Az érintetteknek általános tájékoztató leveleket és érdekelődésüket felmérő kérdőíveket küldtük ki, hogy a Víz Keretirányelv tartalmáról és a tervezés folyamatáról értesüljenek, és az elkészült konzultációs anyagokat felkészültebben vegyék kézbe.

Az alegységi fórumok indulásakor a lakosság a sajtón keresztül értesülhetett és az érdekelődésüket felmérő kérdőíveket küldtük ki, hogy a Víz Keretirányelv tartalmáról és a tervezés folyamatáról értesüljenek, és az elkészült konzultációs anyagokat felkészültebben vegyék kézbe.

Az alegységi fórumok indulásakor a lakosság a sajtón keresztül értesülhetett és az érdekelődésüket felmérő kérdőíveket küldtük ki, hogy a Víz Keretirányelv tartalmáról és a tervezés folyamatáról értesüljenek, és az elkészült konzultációs anyagokat felkészültebben vegyék kézbe.

A területi fórumok szakmai alapja a honlapon közzéített és az érdekeltek körében meghirdetett alegységi konzultációs anyag volt, amit kiegészített a fórumon elhangzott
c) Tematikus fórumok

A tematikus fórum a társadalmi véleményezési folyamat egyik csatornája. Célja egyrészt a VGT tervezés folyamán szakmai vélemények feltárása és begyűjtése az érintett szakmai és érdekképviseleti csoportoktól, javaslataik szervezett formában való megjelenítése. Másrésztt a vélemények célzott megjelenítése a tervezők felé, lehetőleg a tervezés minél korábbi fázisában, hogy azokat megfelelően felhasználhassák; majd a tervezők reakciójának összegyűjtése és hozzáférhetővé tétele. Összesen 18 témakörben 24 tematikus fórum szervezésére került sor.

A háromféle tematikus fórum került megszervezésre.

a. országos szinten fontos témakörök (mezőgazdaság, természetvédelem, erdőgazdálkodás, önkormányzati feladatok, termálvizek, halászat, horgászat, szabályozási és átfogó intézkedések, intézményfejlesztés, fejlesztési programozás, infrastruktúra fejlesztése, finanszírozás),

b. földrajzilag lehatárolható és különös figyelmet igénylő területek (Alföld felszín alatti vizei, Tisza tó, Köretes és TIKEVIR, Dunántúli-középhegységi és a kapcsolódó Budapest környéki hideg és termál karsztvizek),

c. 4 részvízgyűjtő szintjén jelentkező kérdések.

A tematikus fórumok témái, időpontjai és összefoglaló számadatok a 10-2. mellékletben találhatók.

d) A Vízgazdálkodási tanácsok

A részvízgyűjtőkkel (Duna, Tisza, Dráva, Balaton) azonos működési területtel 4 részvízgyűjtő vízgazdálkodási tanács jött létre. Tagosszetételük alapvetően két részből áll. Egyrészt 15 fő 40-20-20-20%-os összetétellel képviseli az államiigazgatási, a társadalmi, a gazdasági és tudományos-szakmai szektort, másrészt 1-1 tagot a részvízgyűjtőn működési területtel rendelkező területi vízgazdálkodási tanácsok delegálnak. Ez eltérő létszámot eredményez a részvízgyűjtőn érintett TVT-k számától függően. Titkársági feladatait a részvízgyűjtő-szintű tervek összeállításáért felelős környezetvédelmi és vízügyi igazgatóságok (Duna – Győr; Tisza – Szolnok; Dráva – Pécs; Balaton – Székesfehérvár) látják el.

Az országos szintű testület, az Országos Vízgazdálkodási Tanács, röviden OVT, amely 34 fős összlétszámmal jött össze. Tagjai a tervkészítés koordinációjáért országosan, illetve részvízgyűjtő-területen felelős szervek (KvVM három szakterületről, VKKI, OKTVF, Észak-dunántúli, Közép-dunántúli, Dél-dunántúli és a Közép-Tisza-vidéki Környezetvédelmi és Vízügyi Igazgatóság, összesen 9 fő). További 24 fő tekintetében a fentiekhez közel hasonló 40-20-20-20%-os összetételű, azaz államiigazgatás 9 fő; társadalmi szervezetek 5 fő; gazdasági szereplők 5 fő; és tudományos-szakmai terület képviselői 5 fő. Elnöke (további tagként) a miniszter által kijelölt állami vezetői. Titkársági feladatait a KvVM látja el.

A Fekete-víz tervezési alegység szempontjából illetékes Dél-dunántúli Területi Vízgazdálkodási Tanács a fent említett 5/1998 (III. 11.) KHVM rendelet alapján 1998-ban jött létre a Dél-dunántúli Környezetvédelmi és Vízügyi Igazgatóságéval megegyező működési terüettel és 22 fős létszámmal, mely az alábbi szervezeteket képviseli:

1. Környezetvédelmi és Vízügyi Minisztérium
2. Dél-dunántúli Környezetvédelmi és Vízügyi Igazgatóság
3. Dél-dunántúli Környezetvédelmi, Természetvédelmi és Vízügyi Felügyelet
4. Duna-Dráva Nemzeti Park Igazgatóság
5. ÁNTSZ Dél-dunántúli Regionális Intézete
6. Baranya Megyei Mezőgazdasági Szakigazgatási Hivatal
7. Somogy Megyei Mezőgazdasági Szakigazgatási Hivatal
8. Baranya Megyei Mezőgazdasági Szakigazgatási Hivatal
9. Somogy Megyei Mezőgazdasági Szakigazgatási Hivatal
10. Baranya megyei Területfejlesztési Tanács
11. Somogy megyei Területfejlesztési Tanács
12. Dél-Dunántúli Regionális Fejlesztési Tanács
13. Dél-Dunántúli Regionális Idegenforgalmi Bizottság
14. Baranya megyei Területi Agrárkamara
15. Somogy megyei Területi Agrárkamara
16. Pécs-Baranyai Kereskedelmi és Iparkamara
17. Somogy megyei Kereskedelmi és Iparkamara
18. Baranya Megyei Mérnöki Kamara
19. Somogy Megyei Mérnöki Kamara
20. Dunántúli Regionális Vízmű Zrt.
21. Pécsi Víztársulat
22. Kavíz Kft.

E Tanács, melynek titkársági feladatait a pécsi székhelyű Dél-dunántúli Környezetvédelmi és Vízügyi Igazgatóság látja el, 2009. december 1-én hozta létre Vízgyűjtő-gazdálkodási Tervezési Bizottságot, annak érdekében, hogy az érintett társadalmi csoportokat minél szélesebb körben vonja be a vízgyűjtő-gazdálkodási tervezési folyamatba, ezzel is növelve
a tervek társadalmi elfogadottságát. A Bizottság 15 fős létszámú, melynek 40% államigazgatás (6 fő), 20% társadalmi szervezetek (3 fő), 20% gazdasági szereplők (3 fő) és 20% a tudományos-szakmai terület (3 fő) összetételben - az alábbi szervezetek a tagjai:

1. Dél-dunántúli Környezetvédelmi és Vízügyi Igazgatóság
2. Dél-dunántúli Környezetvédelmi, Természettudományi és Vízügyi Felügyelőség
3. Duna-Dráva Nemzeti Park Igazgatóság
4. ÁNTSZ Dél-dunántúli Regionális Intézete
5. Somogy Megyei Mezőgazdasági Szakigazgatási Hivatal Növény- és Talajvédelmi Igazgatóság
6. Dél-Dunántúli Regionális Fejlesztési Tanács
7. Dráva szövetség
8. Horgász egyesületek Baranya megyei Szövetsége
9. Pécs-Baranyai Kereskedelmi és Iparkamara
12. BHV Mezőgazdasági Kft.
13. Magyar Hidrológiai Társaság
14. Vízgazdálkodási Társulatok Országos Szövetsége
15. Pécsi Tudományegyetem Természettudományi Kar

A Tanács és a Tervezési Bizottság legutóbb 2009. december 1-én ülésezett. Az ülésen a résztvevők tájékoztatást kaptak a vízgyűjtő-gazdálkodási tervezés folyamatárol és a működési területre eső alegységek vízgyűjtő-gazdálkodási terveiről, mely alapján mind a Tanács, mind a Tervezési Bizottság ajánlásokkal a tervek jóváhagyása mellett döntött.

10.2 A konzultációk eredményei és hatása a terv tartalmára

Az alegységi fórumon és az alegységet érintő tematikus fórumokon elhangzott észrevételeken túl minden írásbeli hozzászólás feldolgozásra került a 10-3. mellékletben jelezve, hogy az adott véleményt

- a terv jelenleg is tartalmazza / figyelembe veszi
- elfogadják a véleményt, beépítésre kerül / figyelembe veszik a tervben
- részben elfogadják, a vélemény egyes elemeit a beépítik / figyelembe veszik a tervben
- a terv szempontjából nem releváns
- nem fogadják el, a tervbe nem építik be

Ezen értékelés alapján összefoglalva elmondható, hogy az észrevételek többsége a már korábban is felmerült, a vizek állapotával vagy a tervezési folyamatral kapcsolatos problémákra, kérdésekre hivták fel a figyelmet. Ezek természetesen figyelembe lettek véve a tervezésben. Akadtak azonban olyan észrevételek is, melyek a terv szempontjából nem voltak relevánsak vagy elfogadhatók, ezek a tervbe nem kerültek beépítésre.

10.3 A tájékoztatásához felhasznált anyagok elérhetősége

A www.vizeink.hu honlapon érhető el minden a társadalom bevonásához kapcsolódó dokumentum, beleértve a 2008-ban megvitatott Jelentős Vízgazdálkodási Kérdések című dokumentumot és a 2009-ben zajlott konzultáció dokumentumait. Utóbbiak között az országos, részvízgyűjtő és alegységi terv kéziratok, konzultációs anyagok és mellékletek, háttéranyagok és megalapozó tanulmányok, fórumok prezentációi, meghívói, jegyzőkönyvei, a Stratégiai Környezeti Vizsgálat dokumentumai a legfontosabbak. Minden irában érkezett hozzászólás, valamint a szóban
elhangzott vélemények emlékezetetői is megtekinthetők a honlapon. Az alegységi konzultációkkal kapcsolatban az alábbi dokumentumok érhetők el a honlapon:

- Alegységi vízgyűjtő-gazdálkodási terv kézirata és mellékletei
- Alegységi vízgyűjtő-gazdálkodási terv konzultációs anyaga és mellékletei
- Alegységi vízgyűjtő-gazdálkodási terv kéziratához, konzultációs anyagához és mellékleteihez érkezett naplózott, mindenkí által követhető, és tovább véleményezhető hozzászólások és vélemények
- Alegységi Területi Fórumok dokumentumai
 1) Meghívó
 2) Prezentációk
 - Fórum keretei (bevezető előadás)
 - Alegységi terv rövid bemutatása (szakértői előadás)
 3) Emlékezetetők és jelenléti ívek
 - fórum emlékeztetője az elhangzott véleményekről
 - jelenléti ív (kitakarva személyes adatok, maradó adatok: név, szervezet)
 - 4 db fotó
- Tematikus fórumok dokumentumai
 1) Meghívó
 2) Prezentációk
 - Fórum keretei (bevezető előadás)
 - Alegységi terv rövid bemutatása (szakértői előadás)
 3) Emlékezetetők és jelenléti ívek
 - fórum emlékeztetője az elhangzott véleményekről
 - jelenléti ív (kitakarva személyes adatok, maradó adatok: név, szervezet)
 - 4 db fotó
Éghajlatváltozás

11.1 Az éghajlatváltozás várható hatásai

Az éghajlatváltozás a magyar társadalmat, a nemzetgazdaságot, és a vizek célként megjelölt állapotát fenyegető, cselekvésre kényeztető tényező. A tudományos elemzések alapján várható, hogy az előképző évtizedekben jelentős mértékben megváltozik hőmérséklet- és csapadékvizsgyök, az évszakok lehetséges eltolódása, egyes szélsőséges időrajzi jelenségek erősödése és gyakoriságuk növekedése veszélyezteteti a természeti értékeket (többek között a vizeket, hazánk élővilágát, leginkább az erdőket), a mezőgazdasági terméshozamokat, az építményeket és a lakókörnyezetet, valamint a lakosság egészségét és életminőségét. Az ENSZ IPCC tudóscsoportja megállapította, hogy a klímaváltozás biológiai sokszínűségre, azaz az élővilág fajgazdagságára gyakorolt hatása szempontjából Magyarország Európa egyik legsérülékenyebb országa 15.

A meteorológiai viszonyok statisztikai jellemzőinek változása már jelenleg is kimutatható: országos átlagban az utóbbi 50 évben kb. 0,1 °C/év átlagos hőmérsékletnövekedés, és megközelítően stagnáló éves csapadék mellett kb. 10 mm/év fokozott lefolyáscsökkenés tapasztalható. A tudományos közösség megállapítása szerint a 20. század második felében végbemenő mintegy fél Celsius fokos melegedésben jelenik meg az emberi hatások szerepe. A legfrissebb vizsgálatok szerint Magyarország klimája valószínűleg mediterrán irányba fog eltolódni,

- magasabb átlaghőmérséklettel (a 21. század első harmadában kb. 1,5 °C, a század végére akár 4-6 fokos növekedés lehetséges),
- kismértékben csökkenő éves csapadékkal (a század első harmadában 4,5%-os téli félévi növekedéshez 5%-os nyári félévi csökkenés tartozik, de a nyári csökkenés akár a 10%-ot is elérheti; a hosszú távú előrelépések feltételezik a hőmérsékleti változásokkal arányos változásokat, de ez 4 °C felett már bizonytalan),
- nagyobb potenciális párolgással (a várható változás a téli félévben 15%/°C, illetve a nyári félévben 10%/°C),
- a csapadék évente esetleg csökkenhet, a csapadék csökkenése is jelentős mértékű változásokra számíthatunk, a hőmérsékleti változásokkal arányos változásokat, de ez 4 °C felett már bizonytalan,
- nagyobb potenciális párolgással (a várható változás a téli félévben 15%/°C, illetve a nyári félévben 10%/°C),
- nagyobb potenciális párolgással (a várható változás a téli félévben 15%/°C, illetve a nyári félévben 10%/°C),
- nagyobb potenciális párolgással (a várható változás a téli félévben 15%/°C, illetve a nyári félévben 10%/°C).
A körában kisebb nyári csapadék és jelentősebb potenciális párolgás hatására a nyári kisvízek számontevő csökkenése prognosztizálható, amely jelentősen csökkentheti a tározás nélkül hasznosítható felszíni vízkészleteket (A kisvízi készlet csökkenése várhatóan is érezhető mértékű lesz). A tározók méretét korlátozhatja a feltöltsések meghatározó télidőszak szélsőségeivel, illetve párolgás-növekedés miatt bekövetkező vízvészsége. Hasonló okok miatt csökken a tavak természetes vízkészlete is. Azaz, a jövőben a tavakban gyakrabban fog előfordulni tartósan alacsony vízállás. Vízsgálatok szerint a Balaton 2003-as évben előállt vízszintcsökkenéséhez hasonlóan változás a jövőben 20-30 évente előfordulhat.

A kisvízi hozamok csökkenése érzékenyebbe teszi a vízfolyásokat a szennyezőanyag-terhelésekkel szemben is. A kisebb vízmennyiség miatt a vizek önthetszűk képessége csökkenhet, ilyen módon egyes szennyezések lebomlására lassabb lehet meg. A hirtelen keletkező, gyors árvizek által a vízfolyók örszágét nagymértékben is a felhőkön heves esőzéssel elérhető járás, maga a gyors vízfolyás a tápanyagmérlege. Nővekszik a havária események kockázata is.

A csapadékban, a potenciális párolgásban és az általánosan érvényes szárazabb talajállapotban is érzékenyek a vízfolyások a klímaváltozás következtében.

A klimaváltozás hatása a felszín alatti vizek mennyiségét és minőségét is érinti. A szárazabb időjárásokhoz kapcsolható romló ökológiai állapot az ország több tájegységeiben már ma is tapasztalható (kiemelkedik a Duna-Tisza közti hátság). Mindez további fő oka: további vizes élőhelyek, szikes tavak, felszín alatti vizektől függő űkoszisztemák válhatnak veszélyeztetetté a klimaváltozás következtében.

A csapadékban, a potenciális párolgásban és az általánosan érvényes szárazabb talajállapotok miatt a felszín alatti vizeket tápláló csapadékutánpótlódás általános csökkenése várható, arányaiban ez az Alföldön lesz a legnagyobb mértékű. Az Alföldön jelentősen csökken az öntözésre fordítható felszín alatti víz mennyisége, és 50 – 100 év távlattában veszélyeztheti a nagy arányban felszín alatti vízkészletekre épülő ivóvízelhárítást is. A kisebb beszivárgás miatt, a korábbival azonos beoldódó szennyezések lebomlása lassabban megy végbe. A hirtelen keletkező árvizek által a felhőkön lebomlott vízanyag jelentős részét nem lehet megválasztani a vízfelvételhez, és így más néven az ország középhegységi és dombvidéki részein feltétlenül várható az időjárás változásának valószínűsítése, azakhoz azonban szükséges a további klimaváltozás közvetlen eredményeit is figyelembe venni.
részvízgyűjtőn már kismértékű éghajlatváltozás is jelentősen csökkentheti a biológiai sokféleséget. A Balaton részvízgyűjtő területén a Balaton-felvidék és a Balaton déli partján az egykori nagy kiterjedésű lápok területe kiemelten sérülékeny.

11.2 Az éghajlatváltozás kezelése a vízgyűjtő-gazdálkodási tervben

A MTA-KvVM együttműködés keretében készült VAHAVA projekt eredményeire, valamint az éghajlatváltozással foglalkozó nemzetközi szervezet (IPCC) újabb jelentésére alapozva jelent meg a Nemzeti Éghajlatváltozási Stratégia (NÉS) 2008-ban, amely a vízgazdálkodást érintő fontos célkitűzéseket is tartalmaz, illetve a védett területek, mezőgazdaság és erdőgazdaság esetében is fogalmaz meg olyan intézkedéseket, amelyek hozzájárulnak a vizekkel kapcsolatos változásokra való felkészüléshez (hatások mérséküléséhez, alkalmazkodáshoz). A vizek állapotával kapcsolatos, NÉS-ben megfogalmazott feladatokat a vízgyűjtő-gazdálkodási terv is tartalmazza. A VGT – összhangban a NÉS-sel – az alábbi, az éghajlatváltozással összefüggő intézkedéseket tartalmazza:

- A vízgazdálkodásban feltétlen szükséges új, víztakarékossági módszereket (szárazságtűrő növények, víztakarékos öntözési technológiák és szerelvények) alkalmazni illetve kidolgozni, és ezzel a vízhasználat hatékonyságát növelni: azaz biztosítani az adottságokhoz alkalmazkodó fenntartható vízhasználatokat (8.5 fejezet).
- A gyors vízelvezetésen alapuló szemléletet fel kell váltsa a csapadék az árvizek visszatartására való törekvés, amely egyaránt megjelenik az árvíz- és belvíz kockázati tervek módszerzatanában, illetve a VGT agrár-intézkedéseinek, csapadékvíz-gazdálkodással és belvíz-rendszerekkel kapcsolatos intézkedéseiben. A vízműsorszintének szempontjából javasolt vízvédelmi zónarendszert bővíthető az aszály-érzékeny területek kijelölésével, és az azokra vonatkozó intézkedések – fenti szempontok szerinti – meghatározásával és alkalmazásával (8.2.4 fejezet).
- Növelni kell a tisztított szennyvizek helyben tartását (8.2.1 fejezet).
- A csökkenő kisvízi készletek miatt a vízfolyások hígító kapacitása is csökken, ami a terhelések csökkentésével ellensúlyozható. Ilyen intézkedéseket tartalmaz a VGT, jelentőségüket az éghajlatváltozás várható hatása növeli (8.2.1 fejezet).
- Az ártéri vízgazdálkodást közelíteni kell a természeteshez (pl. fokgazdálkodás). A VGT hidromorfológiai intézkedései az árterek – részbeni – helyreállítását, illetve a hullámterületi területhasználatok ökológiai és árvízi szempontok szerinti alakítását irányozzák elő, amely rugalmas eszköz a szélsőséges árhullámok kezelésére is (8.4.2 fejezet).
- Kiemelten fontos a vizes élőhelyek és erdőterületek területének növelése, az eredetileg vízjárta, jelenleg belvizes területeken (8.2.4 fejezet). Biztosítani kell az élőhelyek vízmegtartó képességének helyreállítását, ezért komplex vízgazdálkodási rendszereket kell kialakítani, szükség esetén lokális vízpótlással, az ökológiai előírások, a természetvédelmi szempontok figyelembevételével. Ezt szolgálják a víztől függő ökoszisztémák védelme érdekében hozott intézkedések (8.7.1 fejezet).
- Az éghajlatváltozás miatt várhatóan jelentősen csökkenő kisvízi készletek növelése tározással lehetséges. A vízkészlet-gazdálkodási célú víztározás szerepe várhatóan növekszik, létesítésük és üzemeltetésük során azonban figyelembe kell venni a VKI ökológiai szempontú előírásait (8.4.3 fejezet).
- A vízhiányt elsősorban a helyi viszonyokhoz való - fentiek szerinti – alkalmazkodással kell kezelni. Az éghajlatváltozás hatása azonban elérhet olyan mértéket, amikor a készleteket jelentősen meghaladó és át nem csoportosítható igények kielégítése csak más terület készleteinek igénybevételével lehetséges. Az ilyen rendszerek (pl. regionális ivóvízellátó rendszerek kialakítása, öntözési célú átvezetések) megvalósításakor figyelembe kell venni a VKI előírásait: törekedni kell a káros ökológiai
hatások mellőzésére, és amennyiben ez nem lehetséges, a projekt gazdaságtársadalmi szükségességét a VKI 4.7 cikke alapján kell igazolni. A VGT ilyen célú intézkedéseket nem tartalmaz, tartalmaz viszont olyan intézkedést, amely a vízkészletek hatékony, és a jelenleginél kisebb környezeti hatásokkal járó hasznosításának lehetőségeire vonatkozik (8.6 fejezet).

A szélsőségesen nagy csapadékok által okozott árvizeket a Víz Keretirányelv szellemében elsősorban a területi lefolyás mérséklésével és záportározókkal (kevésbé a vízelvezető rendszerek kapacitásának növelésével) kell kezelni. A települési csapadékvíz elvezető rendszerek kialakításakor figyelembe kell venni a vízminőségi követelményeket is – a befogadó vízfolyásokba történő bevezetés előtt, a jelentősen szennyezett árhullám visszatartására szűrömezők alkalmazása javasolt. (8.2.2 és 8.2.4 fejezet).

Összességében megállapítható, hogy akár a mennyiséget, akár a minőséget érintő intézkedésekről van szó, a VKI-val kapcsolatos állapotjavító intézkedések kedvezőek az éghajlatváltozásra való felkészülésben: csökken a terhelés, takarékosabbá válik a vízhasználat, növekszik az ökológiai rendszerek tűrőképessége, pufferkapacitása. Az éghajlatváltozás fenti hatásait ismertetett hatása ugyanakkor fókuzni fogják a VGT-ben bemutatott problémákat, nehezíteni fogják a megoldásokat és az egyre fontosabbá váló határmenti együttműködéseket.

A terv hatévenkénti felülvizsgálati ciklusai lehetővé teszik az intézkedések módosítását, vagyis a menetközben pontosabbá váló ismeretekhez és előrejelzett hatásokhoz való rugalmas alkalmazkodást.
A terv készítésében résztvett szakértők

1) Szakértői csoportokban közreműködő szakértők:

- Ökológia:
 Vezető: Dr. Szilágyi Ferenc
 Kulcsszakértő: Dr. Istvánovics Vera
 Tagok: Dr. Borics Gábor, Dr. Ács Éva, Dr. Padisák Judit, Dr. Müller Zoltán, Halasi-Kovács Béla, Várbiró Gábor, Pomogyi Piroksa, Szalma Elemer

- Felszíni vízminőség:
 Vezető: Dr. Clement Adrienne
 Kulcsszakértő: Dr. László Ferenc
 Tagok: Dr. Szilágyi Ferenc, Raum László, Bácskai György, Kovács Ádám, Honti Márk

- Hidromorfológia:
 Vezető: Simonffy Zoltán
 Kulcsszakértő: Simonffy Zoltán
 Tagok: Szalay Miklós, Dr. Nagy Sándor, Csillag Árpád

- Felszín alatti vizek:
 Vezető: Dr. Szőcs Teodóra
 Kulcsszakértő: Dr. Szőcs Teodóra
 Tagok: Dr. Cserny Tibor, Tóth György, Liebe Pál, Zöldi Irma, Gondár Károly, Gondárné, Söregi Katalin

- Gazdasági elemzések, szabályozás, finanszírozás:
 Vezető: Rákosi Judit
 Kulcsszakértő: Dr. Ress Sándor
 Tagok: Mozsgai Katalin, Ungvári Gábor, Kovácsné Molnár Gyöngyi,

- Társadalom bevonása:
 Vezető: Karas László
 Kulcsszakértő: Szilvácsku Zsolt
 Tagok: Ereifej Laurice, Vári Anna, Kerpely Klára, Szabó Balázs, Fülöp Gyula, Szilvácsku Zsolt, Balogh Alexandra

- Stratégiai környezeti vizsgálat (SKV):
 Vezető: Szilvácsku Zsolt
 Kulcsszakértő: Dr. Ijjas István
VÍZGYŰJTŐ-GAZDÁLKODÁSI TERV
3-3 Fekete-víz vízgyűjtő

- Vízgyűjtő-gazdálkodási tervek összeállításáért felelős munkacsoport:
 Vezető: dr. Tombácz Endre
 Kulcsszakértő: Almássy András

2) Egyéb közreműködő szakértők

- Vízügyi és Környezetvédelmi Központi Igazgatóság:
 Vezető: Dr. Váradi József, Jakus György
 VKI koordinátor: Dr. Perger László

- Dél-dunántúli Környezetvédelmi és Vízügyi Igazgatóság:
 Vezető: György Béla, Schubert József
 VKI koordinátor: Márk László

- Közép-dunántúli Környezetvédelmi és Vízügyi Igazgatóság:
 Vezető: Dr. Csonki István, Kumánovics György
 VKI koordinátor: Tóth Sándor

- Dél-dunántúli Környezetvédelmi, Természetvédelmi és Vízügyi Felügyelőség:
 Vezető: Jeszták Lajos
 VKI koordinátor: Pál Gábor
 Tagok: KTVF szakértők
Duna-Dráva Nemzeti Park Igazgatóság:
Vezető: Závoczky Szabolcs
VKI koordinátor: Parrag Tibor
Tagok: NPI szakértők

Szamaterv Kft.:
Vezető: Szathmáry Magdolna
Tagok: szakértők